IDDF2020-ABS-0078 Immunoscore Classification from Hepatocellular Carcinoma Histopathology Images Using Deep Learning: A Preliminary Study

人工智能 卷积神经网络 接收机工作特性 深度学习 计算机科学 模式识别(心理学) 人工神经网络 医学 机器学习
作者
Qiaofeng Chen,Yunquan Gu,Ruixuan Wang,Xiao Han,Sui Peng,Ming Kuang
出处
期刊:Abstracts 卷期号:: A78.2-A79 被引量:1
标识
DOI:10.1136/gutjnl-2020-iddf.150
摘要

Background

Immunotherapy is a recent advance for the treatment of hepatocellular carcinoma (HCC). Immunoscore assessment plays a critical role in precision immunotherapy and can predict prognosis in patients with HCC. This study aims to develop a deep-learning model to automated analyze histopathology images for classification of immunoscore (CD3 or CD8, 0–2 vs. 3–4) in HCC.

Methods

We trained a patch-based deep convolutional neural network (Resnet-18) on whole-slide images to automatically classify immunoscore into 0–2 or 3–4. The data were randomly split into a training and testing dataset. The performance was first estimated on the training dataset with nine-folded cross-validation and then further validated on the testing dataset. Cross-entropy was used as a model-optimized loss function and the accuracy as well as the area under the receiver operating characteristic curve (AUC) were calculated for the identification values. Heatmaps were also generated by our model to visualize the regions the most associated with the classification.

Results

We included 28 images from a study cohort of 28 HCC patients for training (18 images) and testing (10 images) the model. After iterative training, an optimized architecture achieved an AUC of 0.71 was used as our final model. For validation on the testing dataset, the model yielded an accuracy of 90% and AUC of 0.93 (95% CI: 0.76 to 1.00) while the percentage of patches positively classified, and outperforms average of the probabilities of the corresponding patches (accuracy 70%; AUC 0.79, 95% CI: 0.50 to 1.00) using the same optimal threshold of 0.33. The heatmaps show that almost all of patches are highly identified to show the regions of immunoscore ((figure 1) A. Immunoscore of 3–4 [positive]. B. Immunoscore of 0–2 [negative]).

Conclusions

The automated deep-learning model achieved good performance and could potentially assist clinicians in the identification of HCC patients who are more likely to respond to immunotherapy, or at least, providing second opinions on therapeutic decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
这样说话完成签到 ,获得积分10
3秒前
3秒前
7秒前
sijia发布了新的文献求助10
8秒前
lilac完成签到,获得积分10
9秒前
9秒前
皮皮虾完成签到,获得积分10
9秒前
顺利问玉完成签到 ,获得积分10
9秒前
六也完成签到,获得积分10
11秒前
七子完成签到,获得积分0
13秒前
舒心的雍发布了新的文献求助10
13秒前
老天师一巴掌完成签到 ,获得积分10
13秒前
14秒前
zzx396完成签到,获得积分0
14秒前
Muhi完成签到,获得积分10
19秒前
DrWho1985完成签到,获得积分10
20秒前
20秒前
墨痕mohen完成签到,获得积分0
20秒前
怕黑的土豆完成签到,获得积分10
20秒前
粗犷的迎松完成签到,获得积分10
23秒前
快乐小瑶完成签到 ,获得积分10
23秒前
Amber完成签到,获得积分10
25秒前
27秒前
31秒前
32秒前
专一的白萱完成签到 ,获得积分10
32秒前
Amber发布了新的文献求助10
33秒前
小美女完成签到,获得积分10
34秒前
小呆完成签到 ,获得积分10
35秒前
团子完成签到,获得积分10
36秒前
沈惠映发布了新的文献求助10
36秒前
默默发布了新的文献求助10
38秒前
sijia完成签到,获得积分10
38秒前
zhangxinxin完成签到 ,获得积分10
44秒前
44秒前
44秒前
李思雨完成签到 ,获得积分10
47秒前
48秒前
Lucas应助sci采纳,获得10
51秒前
lzl发布了新的文献求助10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866712
求助须知:如何正确求助?哪些是违规求助? 6426461
关于积分的说明 15654910
捐赠科研通 4981701
什么是DOI,文献DOI怎么找? 2686725
邀请新用户注册赠送积分活动 1629535
关于科研通互助平台的介绍 1587532