IDDF2020-ABS-0078 Immunoscore Classification from Hepatocellular Carcinoma Histopathology Images Using Deep Learning: A Preliminary Study

人工智能 卷积神经网络 接收机工作特性 深度学习 计算机科学 模式识别(心理学) 人工神经网络 医学 机器学习
作者
Qiaofeng Chen,Yunquan Gu,Ruixuan Wang,Xiao Han,Sui Peng,Ming Kuang
出处
期刊:Abstracts 卷期号:: A78.2-A79 被引量:1
标识
DOI:10.1136/gutjnl-2020-iddf.150
摘要

Background

Immunotherapy is a recent advance for the treatment of hepatocellular carcinoma (HCC). Immunoscore assessment plays a critical role in precision immunotherapy and can predict prognosis in patients with HCC. This study aims to develop a deep-learning model to automated analyze histopathology images for classification of immunoscore (CD3 or CD8, 0–2 vs. 3–4) in HCC.

Methods

We trained a patch-based deep convolutional neural network (Resnet-18) on whole-slide images to automatically classify immunoscore into 0–2 or 3–4. The data were randomly split into a training and testing dataset. The performance was first estimated on the training dataset with nine-folded cross-validation and then further validated on the testing dataset. Cross-entropy was used as a model-optimized loss function and the accuracy as well as the area under the receiver operating characteristic curve (AUC) were calculated for the identification values. Heatmaps were also generated by our model to visualize the regions the most associated with the classification.

Results

We included 28 images from a study cohort of 28 HCC patients for training (18 images) and testing (10 images) the model. After iterative training, an optimized architecture achieved an AUC of 0.71 was used as our final model. For validation on the testing dataset, the model yielded an accuracy of 90% and AUC of 0.93 (95% CI: 0.76 to 1.00) while the percentage of patches positively classified, and outperforms average of the probabilities of the corresponding patches (accuracy 70%; AUC 0.79, 95% CI: 0.50 to 1.00) using the same optimal threshold of 0.33. The heatmaps show that almost all of patches are highly identified to show the regions of immunoscore ((figure 1) A. Immunoscore of 3–4 [positive]. B. Immunoscore of 0–2 [negative]).

Conclusions

The automated deep-learning model achieved good performance and could potentially assist clinicians in the identification of HCC patients who are more likely to respond to immunotherapy, or at least, providing second opinions on therapeutic decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dabao完成签到,获得积分10
刚刚
azami完成签到,获得积分10
2秒前
3秒前
去码头整点薯条完成签到 ,获得积分10
4秒前
Ccc完成签到,获得积分10
4秒前
abb完成签到 ,获得积分10
5秒前
SWD完成签到,获得积分10
8秒前
10秒前
轻松梦岚关注了科研通微信公众号
12秒前
原野发布了新的文献求助10
15秒前
Lixin完成签到,获得积分20
16秒前
虚幻沛文完成签到 ,获得积分10
18秒前
Zion完成签到,获得积分0
18秒前
19秒前
20秒前
好好学习发布了新的文献求助20
23秒前
23秒前
张路完成签到 ,获得积分10
23秒前
25秒前
哈哈发布了新的文献求助10
25秒前
pei发布了新的文献求助10
26秒前
苗条的枕头完成签到 ,获得积分10
26秒前
暮雨初晴完成签到,获得积分10
26秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
27秒前
FashionBoy应助疯狂的夏槐采纳,获得10
27秒前
27秒前
123完成签到 ,获得积分10
28秒前
LHX完成签到,获得积分10
29秒前
XYY发布了新的文献求助10
29秒前
轻松梦岚发布了新的文献求助10
30秒前
搜集达人应助梦里格斗家采纳,获得10
30秒前
31秒前
长长的名字完成签到 ,获得积分10
32秒前
yyy完成签到 ,获得积分10
33秒前
淡淡的山芙完成签到 ,获得积分10
33秒前
34秒前
Serena完成签到 ,获得积分10
34秒前
pei完成签到,获得积分10
35秒前
夏xia发布了新的文献求助10
35秒前
醉熏的天薇完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5867164
求助须知:如何正确求助?哪些是违规求助? 6430915
关于积分的说明 15656075
捐赠科研通 4982317
什么是DOI,文献DOI怎么找? 2686957
邀请新用户注册赠送积分活动 1629756
关于科研通互助平台的介绍 1587759