Exciton Dissociation and Suppressed Charge Recombination at 2D Perovskite Edges: Key Roles of Unsaturated Halide Bonds and Thermal Disorder

化学 激发态 激子 卤化物 钙钛矿(结构) 化学物理 极化子 离解(化学) 电子 基态 密度泛函理论 分子物理学 原子物理学 凝聚态物理 计算化学 物理化学 无机化学 物理 结晶学 量子力学
作者
Zhaosheng Zhang,Wei‐Hai Fang,Run Long,Oleg V. Prezhdo
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:141 (39): 15557-15566 被引量:100
标识
DOI:10.1021/jacs.9b06046
摘要

Two-dimensional (2D) Ruddlesden–Popper perovskites form a new class of solar energy materials with high performance, low cost and good stability. Nonradiative electron–hole recombination is the main source of charge and energy losses, limiting material efficiency. Experiments show that edge states in 2D halide perovskites accelerate exciton dissociation into long-lived charge carriers, improving performance. Using a combination of nonadiabatic molecular dynamics and time-domain density functional theory, we demonstrate that unsaturated chemical bonds of iodine atoms at perovskite edges is the main driving force for hole localization. Chemically unsaturated Pb atoms confine electrons to a much lesser extent, because they more easily support different oxidation states and heal chemical defects. This difference between defects associated with metals and nonmetals is general to many nanoscale systems. Thermal atomic fluctuations play important roles in charge localization, even in the bulk region of 2D perovskite films, a phenomenon that is different from polaron formation. Charge localization at edges is robust to thermal excitation at ambient conditions. The separated charges live a long time, because the nonadiabatic coupling between the excited and ground states is small, under 1 meV, and quantum coherence is short, less than 10 fs. The calculations agree very well with the time-resolved optical measurements on both luminescence lifetime and line width. The detailed understanding of the excited state dynamics in the 2D halide perovskites generated by the simulations highlights the unique chemical properties of these materials, and provides guidelines for design of efficient and inexpensive solar energy materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唯唯发布了新的文献求助10
刚刚
1秒前
李爱国应助vn采纳,获得10
5秒前
6秒前
7秒前
8秒前
GG发布了新的文献求助10
11秒前
丁小猕发布了新的文献求助10
12秒前
凯瑟琳发布了新的文献求助50
13秒前
14秒前
Jasper应助5High_0采纳,获得10
15秒前
大胆的蛋挞完成签到,获得积分10
15秒前
英姑应助singefly采纳,获得10
17秒前
小王完成签到,获得积分10
17秒前
快乐科研人完成签到,获得积分10
18秒前
19秒前
ding应助江洋大盗采纳,获得10
19秒前
22秒前
22秒前
chen发布了新的文献求助10
23秒前
小二郎应助认真的连虎采纳,获得10
24秒前
SciGPT应助快乐的千秋采纳,获得10
25秒前
vn发布了新的文献求助10
25秒前
bread完成签到,获得积分10
26秒前
28秒前
bread发布了新的文献求助10
29秒前
周杰伦完成签到,获得积分10
29秒前
32秒前
烟花应助梦断璇空采纳,获得10
32秒前
chen完成签到,获得积分10
33秒前
充电宝应助成就千易采纳,获得10
35秒前
GG完成签到,获得积分10
37秒前
38秒前
38秒前
byyy应助科研通管家采纳,获得10
38秒前
FIN应助科研通管家采纳,获得30
38秒前
Jasper应助科研通管家采纳,获得10
38秒前
天天快乐应助科研通管家采纳,获得10
38秒前
39秒前
Orange应助科研通管家采纳,获得10
39秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2422697
求助须知:如何正确求助?哪些是违规求助? 2111822
关于积分的说明 5346804
捐赠科研通 1839245
什么是DOI,文献DOI怎么找? 915590
版权声明 561205
科研通“疑难数据库(出版商)”最低求助积分说明 489710