Multiomics Prediction of Response Rates to Therapies to Inhibit Programmed Cell Death 1 and Programmed Cell Death 1 Ligand 1

医学 癌症 肿瘤科 免疫检查点 肿瘤微环境 生物信息学 免疫疗法 内科学 计算生物学 生物
作者
Joo Sang Lee,Eytan Ruppin
出处
期刊:JAMA Oncology [American Medical Association]
卷期号:5 (11): 1614-1614 被引量:207
标识
DOI:10.1001/jamaoncol.2019.2311
摘要

Therapies to inhibit programmed cell death 1 and its ligand (anti-PD-1/PD-L1) provide significant survival benefits in many cancers, but the efficacy of these treatments varies considerably across different cancer types. Identifying the underlying variables associated with this cancer type-specific response remains an important open research challenge.To evaluate systematically a multitude of neoantigen-, checkpoint-, and immune response-related variables to determine the key variables that accurately predict the response to anti-PD-1/PD-L1 therapy across different cancer types.This analysis of a broad range of data used whole-exome and RNA sequencing of 7187 patients from the publicly available Cancer Genome Atlas and the objective response rate (ORR) data of 21 cancer types obtained from a collection of clinical trials. Thirty-six variables of 3 distinct classes considered were associated with (1) tumor neoantigens, (2) tumor microenvironment and inflammation, and (3) the checkpoint targets. The performance of each class of variables and their combinations in predicting the ORR to anti-PD-1/PD-L1 therapy was evaluated. Accuracy of predictions was quantified with Spearman correlation measured using a standard leave-one-out cross-validation, a statistical method of evaluating a statistical model by dividing data into 2 segments: one to train the model and the other to validate the model. Data were collected from October 19 through 31, 2018, and were analyzed from November 1 through December 14, 2018.Response to anti-PD-1/PD-1 therapy.Among the 36 variables, estimated CD8+ T-cell abundance was the most predictive of the response to anti-PD-1/PD-L1 therapy across cancer types (Spearman R = 0.72; P < 2.3 × 10-4), followed by the tumor mutational burden (Spearman R = 0.68; P < 6.2 × 10-4), and the fraction of samples with high PD1 gene expression (Spearman R = 0.68; P < 6.9 × 10-4). Notably these top 3 variables cover the 3 classes considered, and their combination is highly correlated with response (Spearman R = 0.90; P < 4.1 × 10-8), explaining more than 80% of the ORR variance observed across different tumor types.That we know of, this is the first systematic evaluation of the different variables associated with anti-PD-1/PD-L1 therapy response across different tumor types. The findings suggest that the 3 key variables can explain most of the observed cross-cancer response variability, but their relative explanatory roles may vary in specific cancer types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
段国梁完成签到,获得积分10
1秒前
任浩发布了新的文献求助10
2秒前
2秒前
2秒前
哈鲁完成签到,获得积分10
2秒前
wuyy完成签到,获得积分20
3秒前
一叶知秋应助简单的方盒采纳,获得10
4秒前
4秒前
哈鲁发布了新的文献求助20
6秒前
清水发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
搜集达人应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
柏林寒冬应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
圆锥香蕉应助科研通管家采纳,获得20
9秒前
Meyako应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
ED应助科研通管家采纳,获得30
10秒前
科研通AI6应助12345采纳,获得10
10秒前
11秒前
花生仔应助渐渐采纳,获得20
11秒前
CyndiaSUN完成签到,获得积分10
13秒前
Darius完成签到,获得积分10
13秒前
15秒前
大力半鬼完成签到,获得积分10
15秒前
15秒前
15秒前
落落发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
weiwei完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4313289
求助须知:如何正确求助?哪些是违规求助? 3833212
关于积分的说明 11992225
捐赠科研通 3473228
什么是DOI,文献DOI怎么找? 1904597
邀请新用户注册赠送积分活动 951433
科研通“疑难数据库(出版商)”最低求助积分说明 853024