Using machine learning of clinical data to diagnose COVID-19: a systematic review and meta-analysis

2019年冠状病毒病(COVID-19) 医学 大流行 健康信息学 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 机器学习 疾病 内科学 人工智能 重症监护医学 计算机科学 病理 公共卫生 传染病(医学专业)
作者
Wei Tse Li,Jiayan Ma,Neil Shende,Grant Castaneda,Jaideep Chakladar,Joseph C. Tsai,Lauren Apostol,Christine O. Honda,Jingyue Xu,Lindsay M. Wong,Tianyi Zhang,Abby Lee,Aditi Gnanasekar,Thomas K. Honda,Selena Z. Kuo,Michael Yu,Eric Y. Chang,Mahadevan Rajasekaran,Weg M. Ongkeko
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:20 (1) 被引量:164
标识
DOI:10.1186/s12911-020-01266-z
摘要

Abstract Background The recent Coronavirus Disease 2019 (COVID-19) pandemic has placed severe stress on healthcare systems worldwide, which is amplified by the critical shortage of COVID-19 tests. Methods In this study, we propose to generate a more accurate diagnosis model of COVID-19 based on patient symptoms and routine test results by applying machine learning to reanalyzing COVID-19 data from 151 published studies. We aim to investigate correlations between clinical variables, cluster COVID-19 patients into subtypes, and generate a computational classification model for discriminating between COVID-19 patients and influenza patients based on clinical variables alone. Results We discovered several novel associations between clinical variables, including correlations between being male and having higher levels of serum lymphocytes and neutrophils. We found that COVID-19 patients could be clustered into subtypes based on serum levels of immune cells, gender, and reported symptoms. Finally, we trained an XGBoost model to achieve a sensitivity of 92.5% and a specificity of 97.9% in discriminating COVID-19 patients from influenza patients. Conclusions We demonstrated that computational methods trained on large clinical datasets could yield ever more accurate COVID-19 diagnostic models to mitigate the impact of lack of testing. We also presented previously unknown COVID-19 clinical variable correlations and clinical subgroups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jxp完成签到,获得积分10
刚刚
1秒前
天天快乐应助任性吐司采纳,获得10
1秒前
QIN完成签到,获得积分10
1秒前
左佐发布了新的文献求助10
3秒前
爆米花应助yc采纳,获得10
3秒前
充电宝应助yc采纳,获得10
3秒前
Orange应助yc采纳,获得10
3秒前
You发布了新的文献求助10
3秒前
4秒前
4秒前
顾矜应助Yi采纳,获得10
4秒前
zazaza完成签到,获得积分10
6秒前
顺心冬瓜完成签到,获得积分20
6秒前
宝宝慧儿7完成签到,获得积分10
7秒前
hiipaige发布了新的文献求助10
9秒前
潼熙甄完成签到 ,获得积分10
9秒前
陌上无人扰完成签到,获得积分10
10秒前
yyds发布了新的文献求助10
10秒前
10秒前
hl完成签到,获得积分10
11秒前
wangqinlei完成签到 ,获得积分10
12秒前
planto完成签到,获得积分10
12秒前
zjrh完成签到,获得积分10
13秒前
13秒前
彭于晏应助hiipaige采纳,获得10
13秒前
14秒前
Yi发布了新的文献求助10
16秒前
19秒前
小小牛完成签到,获得积分10
20秒前
Caixtmx发布了新的文献求助10
20秒前
21秒前
顺心冬瓜关注了科研通微信公众号
22秒前
24秒前
科研通AI5应助沈璃采纳,获得10
25秒前
yinshan完成签到 ,获得积分10
26秒前
LDDDGR发布了新的文献求助10
28秒前
28秒前
11111完成签到 ,获得积分10
32秒前
33秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801662
求助须知:如何正确求助?哪些是违规求助? 3347472
关于积分的说明 10333809
捐赠科研通 3063618
什么是DOI,文献DOI怎么找? 1681974
邀请新用户注册赠送积分活动 807820
科研通“疑难数据库(出版商)”最低求助积分说明 763921