清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Diving deeper into underwater image enhancement: A survey

水下 深度学习 水准点(测量) 计算机科学 稳健性(进化) 人工智能 过程(计算) 图像(数学) 机器学习 地理 大地测量学 生物化学 基因 操作系统 考古 化学
作者
Saeed Anwar,Chongyi Li
出处
期刊:Signal Processing-image Communication [Elsevier BV]
卷期号:89: 115978-115978 被引量:159
标识
DOI:10.1016/j.image.2020.115978
摘要

The powerful representation capacity of deep learning has made it inevitable for the underwater image enhancement community to employ its potential. The exploration of deep underwater image enhancement networks is increasing over time; hence, a comprehensive survey is the need of the hour. In this paper, our main aim is two-fold, (1): to provide a comprehensive and in-depth survey of the deep learning-based underwater image enhancement, which covers various perspectives ranging from algorithms to open issues, and (2): to conduct a qualitative and quantitative comparison of the deep algorithms on diverse datasets to serve as a benchmark, which has been barely explored before. We first introduce the underwater image formation models, which are the base of training data synthesis and design of deep networks, and also helpful for understanding the process of underwater image degradation. Then, we review deep underwater image enhancement algorithms, and a glimpse of some of the aspects of the current networks is presented, including architecture, parameters, training data, loss function, and training configurations. We also summarize the evaluation metrics and underwater image datasets. Following that, a systematically experimental comparison is carried out to analyze the robustness and effectiveness of deep algorithms. Meanwhile, we point out the shortcomings of current benchmark datasets and evaluation metrics. Finally, we discuss several unsolved open issues and suggest possible research directions. We hope that all efforts done in this paper might serve as a comprehensive reference for future research and call for the development of deep learning-based underwater image enhancement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
4秒前
4秒前
顾矜应助科研通管家采纳,获得10
6秒前
等待谷南完成签到,获得积分10
6秒前
武雨寒发布了新的文献求助10
7秒前
书生也是小郎中完成签到 ,获得积分10
7秒前
老木虫发布了新的文献求助10
11秒前
14秒前
anne完成签到 ,获得积分10
14秒前
clock完成签到 ,获得积分10
28秒前
闻巷雨完成签到 ,获得积分10
33秒前
35秒前
万能图书馆应助weijian采纳,获得10
41秒前
七人七发布了新的文献求助10
44秒前
47秒前
叶痕TNT完成签到 ,获得积分10
48秒前
51秒前
weijian完成签到,获得积分10
51秒前
weijian发布了新的文献求助10
54秒前
飞快的冰淇淋完成签到 ,获得积分10
1分钟前
1分钟前
山有扶苏发布了新的文献求助10
1分钟前
土豆晴完成签到 ,获得积分10
1分钟前
1分钟前
汉堡包应助畅快城采纳,获得10
1分钟前
山有扶苏完成签到,获得积分10
1分钟前
个性归尘应助tfq200采纳,获得30
1分钟前
1分钟前
1分钟前
hhh2018687完成签到,获得积分10
1分钟前
雨后完成签到 ,获得积分10
1分钟前
1分钟前
Jasmine发布了新的文献求助10
1分钟前
1分钟前
够了完成签到 ,获得积分10
1分钟前
Ray完成签到 ,获得积分10
1分钟前
jameslee04完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Feminist Explorations of Urban China 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830505
求助须知:如何正确求助?哪些是违规求助? 3372816
关于积分的说明 10475500
捐赠科研通 3092653
什么是DOI,文献DOI怎么找? 1702254
邀请新用户注册赠送积分活动 818839
科研通“疑难数据库(出版商)”最低求助积分说明 771101