亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diving deeper into underwater image enhancement: A survey

水下 深度学习 水准点(测量) 计算机科学 稳健性(进化) 人工智能 过程(计算) 图像(数学) 机器学习 地理 生物化学 化学 考古 大地测量学 基因 操作系统
作者
Saeed Anwar,Chongyi Li
出处
期刊:Signal Processing-image Communication [Elsevier BV]
卷期号:89: 115978-115978 被引量:226
标识
DOI:10.1016/j.image.2020.115978
摘要

The powerful representation capacity of deep learning has made it inevitable for the underwater image enhancement community to employ its potential. The exploration of deep underwater image enhancement networks is increasing over time; hence, a comprehensive survey is the need of the hour. In this paper, our main aim is two-fold, (1): to provide a comprehensive and in-depth survey of the deep learning-based underwater image enhancement, which covers various perspectives ranging from algorithms to open issues, and (2): to conduct a qualitative and quantitative comparison of the deep algorithms on diverse datasets to serve as a benchmark, which has been barely explored before. We first introduce the underwater image formation models, which are the base of training data synthesis and design of deep networks, and also helpful for understanding the process of underwater image degradation. Then, we review deep underwater image enhancement algorithms, and a glimpse of some of the aspects of the current networks is presented, including architecture, parameters, training data, loss function, and training configurations. We also summarize the evaluation metrics and underwater image datasets. Following that, a systematically experimental comparison is carried out to analyze the robustness and effectiveness of deep algorithms. Meanwhile, we point out the shortcomings of current benchmark datasets and evaluation metrics. Finally, we discuss several unsolved open issues and suggest possible research directions. We hope that all efforts done in this paper might serve as a comprehensive reference for future research and call for the development of deep learning-based underwater image enhancement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江夏清完成签到,获得积分10
3秒前
chitin完成签到,获得积分10
4秒前
5秒前
李爱国应助lemkier采纳,获得10
9秒前
xlh完成签到 ,获得积分10
11秒前
12秒前
20秒前
Ghiocel完成签到,获得积分10
23秒前
lemkier发布了新的文献求助10
24秒前
丰富源智完成签到,获得积分10
29秒前
32秒前
34秒前
ifast完成签到 ,获得积分10
34秒前
积极的尔白完成签到 ,获得积分10
37秒前
Hh发布了新的文献求助10
39秒前
49秒前
57秒前
星辰大海应助科研通管家采纳,获得10
57秒前
1分钟前
kyfbrahha完成签到 ,获得积分10
1分钟前
1分钟前
醉熏的姿完成签到 ,获得积分10
1分钟前
1分钟前
ru完成签到 ,获得积分10
1分钟前
Demi_Ming完成签到,获得积分10
1分钟前
可爱的函函应助lemkier采纳,获得10
1分钟前
1分钟前
2分钟前
菘蓝泽蓼完成签到,获得积分10
2分钟前
lemkier发布了新的文献求助10
2分钟前
2分钟前
白桃完成签到,获得积分10
2分钟前
2分钟前
zhao完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
没有伞的青春完成签到 ,获得积分10
2分钟前
2分钟前
慕青应助Rita采纳,获得30
2分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4484087
求助须知:如何正确求助?哪些是违规求助? 3939978
关于积分的说明 12220070
捐赠科研通 3595409
什么是DOI,文献DOI怎么找? 1977263
邀请新用户注册赠送积分活动 1014302
科研通“疑难数据库(出版商)”最低求助积分说明 907439