How do drivers respond to driving risk during car-following? Risk-response driver model and its application in human-like longitudinal control

工程类 危险驾驶 风险分析(工程) 控制(管理) 毒物控制 高级驾驶员辅助系统 人为因素与人体工程学 范围(计算机科学) 驾驶模拟器 运输工程 领域(数学) 主动安全 计算机科学 计算机安全 模拟 汽车工程 人工智能 业务 医学 环境卫生 数学 政治学 纯数学 法学 程序设计语言 航空航天工程
作者
Xiaocong Zhao,Ren He,Jianqiang Wang
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:148: 105783-105783 被引量:43
标识
DOI:10.1016/j.aap.2020.105783
摘要

The blooming of intelligent connected vehicle (ICV) has been continuously shaping a hybrid traffic environment in which the road is shared among ICVs and vehicles driven by human drivers. However, due to the insufficient understanding of the human driving strategy and style, the conflicts between ICVs and human drivers have arisen public attention, threatening the road safety and bottlenecking the development of ICV. In order to embed the human driving strategy in the intelligent driving system, researchers have been rolling out efforts on driver modeling. Most driver models, however, still suffer from the limited application scope or poor transparency. Within our finite horizons, a unified and readable driver model for various driving scenarios is generally unobtainable. In this work, we tried to model the human driving strategy from an aspect of human nature, that is, the way human drivers respond to the driving risk. We employed the risk field theory (also known as the safety field theory) to model the environmental risk in a comprehensive manner. By studying the risk-response strategy from the driving data of 24 human drivers, we proposed a unified structure, which we call the risk-response driver model (RRDM), to model the human driving strategy. This model provides access to learning not only the average driving strategy of a group of human drivers but also the specific driving style of a single driver. The explicit and readable driving strategy produced by RRDM can be directly employed to reproduce human-like longitudinal driving control. We verified the performance of our model in car-following tasks and found that its human-like driving performance is recoverable among the human drivers who participated in the tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hugeng发布了新的文献求助10
刚刚
hehsk发布了新的文献求助10
1秒前
大模型应助11采纳,获得10
2秒前
3秒前
3秒前
彭于晏应助louyu采纳,获得10
4秒前
共享精神应助超帅寒凡采纳,获得10
4秒前
情怀应助mardan采纳,获得10
4秒前
如意宛应助倔驴采纳,获得10
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
dddd发布了新的文献求助10
6秒前
7秒前
所所应助杨佳文采纳,获得10
7秒前
研友_VZG7GZ应助hj采纳,获得10
8秒前
8秒前
Lucas应助丰富之槐采纳,获得10
8秒前
8秒前
尹恩惠完成签到,获得积分10
8秒前
葛洪成发布了新的文献求助10
9秒前
飞翔的荷兰人完成签到,获得积分10
9秒前
完美世界应助白礼嘉采纳,获得10
9秒前
10秒前
10秒前
qinyunpeng发布了新的文献求助10
10秒前
qwer发布了新的文献求助10
10秒前
11秒前
mwm621完成签到,获得积分10
12秒前
地球撞火星关注了科研通微信公众号
13秒前
13秒前
Kyrina完成签到,获得积分10
13秒前
英姑应助Mr朱采纳,获得50
13秒前
13秒前
闫译文发布了新的文献求助10
13秒前
14秒前
15秒前
16秒前
17秒前
英俊的铭应助dddd采纳,获得10
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4247650
求助须知:如何正确求助?哪些是违规求助? 3780662
关于积分的说明 11870181
捐赠科研通 3433874
什么是DOI,文献DOI怎么找? 1884693
邀请新用户注册赠送积分活动 936272
科研通“疑难数据库(出版商)”最低求助积分说明 842161