清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

From Handcrafted to Deep Features for Pedestrian Detection: A Survey

计算机科学 行人 行人检测 人工智能 特征(语言学) 深度学习 机器学习 模式识别(心理学) 地理 语言学 哲学 考古
作者
Jiale Cao,Yanwei Pang,Jin Xie,Fahad Shahbaz Khan,Ling Shao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:44 (9): 4913-4934 被引量:106
标识
DOI:10.1109/tpami.2021.3076733
摘要

Pedestrian detection is an important but challenging problem in computer vision, especially in human-centric tasks. Over the past decade, significant improvement has been witnessed with the help of handcrafted features and deep features. Here we present a comprehensive survey on recent advances in pedestrian detection. First, we provide a detailed review of single-spectral pedestrian detection that includes handcrafted features based methods and deep features based approaches. For handcrafted features based methods, we present an extensive review of approaches and find that handcrafted features with large freedom degrees in shape and space have better performance. In the case of deep features based approaches, we split them into pure CNN based methods and those employing both handcrafted and CNN based features. We give the statistical analysis and tendency of these methods, where feature enhanced, part-aware, and post-processing methods have attracted main attention. In addition to single-spectral pedestrian detection, we also review multi-spectral pedestrian detection, which provides more robust features for illumination variance. Furthermore, we introduce some related datasets and evaluation metrics, and compare some representative methods. We conclude this survey by emphasizing open problems that need to be addressed and highlighting various future directions. Researchers can track an up-to-date list at https://github.com/JialeCao001/PedSurvey.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助科研通管家采纳,获得20
5秒前
Bruce完成签到 ,获得积分10
6秒前
39秒前
5433完成签到 ,获得积分10
44秒前
月亮与六便士完成签到 ,获得积分10
44秒前
温暖果汁发布了新的文献求助10
46秒前
widesky777完成签到 ,获得积分0
53秒前
氢锂钠钾铷铯钫完成签到,获得积分10
57秒前
ramsey33完成签到 ,获得积分10
59秒前
Square完成签到,获得积分10
1分钟前
葫芦芦芦完成签到 ,获得积分10
1分钟前
affff完成签到 ,获得积分10
1分钟前
赧赧完成签到 ,获得积分10
1分钟前
OVO完成签到,获得积分20
1分钟前
Xu完成签到,获得积分10
1分钟前
凤迎雪飘完成签到,获得积分10
1分钟前
OVO发布了新的文献求助20
1分钟前
傲娇的冬萱完成签到 ,获得积分10
2分钟前
现代凝安完成签到,获得积分10
2分钟前
wintel完成签到,获得积分10
2分钟前
济民财完成签到,获得积分10
2分钟前
打打应助qwdqw采纳,获得10
2分钟前
温暖果汁完成签到,获得积分10
2分钟前
Microbiota完成签到,获得积分10
2分钟前
2分钟前
小乙猪完成签到 ,获得积分0
2分钟前
qwdqw发布了新的文献求助10
3分钟前
DJ_Tokyo完成签到,获得积分10
3分钟前
CoCo完成签到 ,获得积分10
3分钟前
qwdqw完成签到,获得积分10
3分钟前
kkk完成签到 ,获得积分10
3分钟前
wyi完成签到,获得积分10
3分钟前
科研通AI5应助OVO采纳,获得10
3分钟前
vsvsgo完成签到,获得积分10
3分钟前
dzll完成签到,获得积分10
4分钟前
4分钟前
cdercder应助科研通管家采纳,获得20
4分钟前
4分钟前
zijingsy完成签到 ,获得积分10
4分钟前
ww完成签到,获得积分10
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792541
求助须知:如何正确求助?哪些是违规求助? 3336762
关于积分的说明 10282100
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468