Collaborate Edge and Cloud Computing With Distributed Deep Learning for Smart City Internet of Things

计算机科学 云计算 服务器 分布式计算 计算卸载 移动边缘计算 移动云计算 边缘计算 计算机网络 移动设备 GSM演进的增强数据速率 人工智能 操作系统
作者
Huaming Wu,Ziru Zhang,Chang Guan,Katinka Wolter,Minxian Xu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (9): 8099-8110 被引量:213
标识
DOI:10.1109/jiot.2020.2996784
摘要

City Internet-of-Things (IoT) applications are becoming increasingly complicated and thus require large amounts of computational resources and strict latency requirements. Mobile cloud computing (MCC) is an effective way to alleviate the limitation of computation capacity by offloading complex tasks from mobile devices (MDs) to central clouds. Besides, mobile-edge computing (MEC) is a promising technology to reduce latency during data transmission and save energy by providing services in a timely manner. However, it is still difficult to solve the task offloading challenges in heterogeneous cloud computing environments, where edge clouds and central clouds work collaboratively to satisfy the requirements of city IoT applications. In this article, we consider the heterogeneity of edge and central cloud servers in the offloading destination selection. To jointly optimize the system utility and the bandwidth allocation for each MD, we establish a hybrid offloading model, including the collaboration of MCC and MEC. A distributed deep learning-driven task offloading (DDTO) algorithm is proposed to generate near-optimal offloading decisions over the MDs, edge cloud server, and central cloud server. Experimental results demonstrate the accuracy of the DDTO algorithm, which can effectively and efficiently generate near-optimal offloading decisions in the edge and cloud computing environments. Furthermore, it achieves high performance and greatly reduces the computational complexity when compared with other offloading schemes that neglect the collaboration of heterogeneous clouds. More precisely, the DDTO scheme can improve computational performance by 63%, compared with the local-only scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
欢喜橙子应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
小白完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
核桃应助科研通管家采纳,获得10
1秒前
完美应助科研通管家采纳,获得10
1秒前
孙燕应助科研通管家采纳,获得10
1秒前
1秒前
欢喜橙子应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
笑面客完成签到,获得积分10
2秒前
kkPi完成签到,获得积分10
3秒前
3秒前
菰蒲完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
5秒前
沐紫心完成签到 ,获得积分10
7秒前
kkPi发布了新的文献求助10
7秒前
lifen发布了新的文献求助10
8秒前
leadsyew完成签到,获得积分10
8秒前
9秒前
Jello发布了新的文献求助10
10秒前
大个应助顺利书翠采纳,获得10
11秒前
整齐碧玉发布了新的文献求助10
11秒前
丰D完成签到 ,获得积分10
13秒前
wx发布了新的文献求助10
14秒前
18秒前
难过丹寒完成签到,获得积分10
19秒前
Zhidong Wei完成签到,获得积分10
20秒前
shijiamian完成签到,获得积分10
20秒前
hh完成签到,获得积分20
20秒前
20秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Beyond The Sentence: Discourse And Sentential Form 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Semantics for Latin: An Introduction 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4076491
求助须知:如何正确求助?哪些是违规求助? 3615441
关于积分的说明 11475668
捐赠科研通 3333249
什么是DOI,文献DOI怎么找? 1832086
邀请新用户注册赠送积分活动 901863
科研通“疑难数据库(出版商)”最低求助积分说明 820570