已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Collaborate Edge and Cloud Computing With Distributed Deep Learning for Smart City Internet of Things

计算机科学 云计算 服务器 分布式计算 计算卸载 移动边缘计算 移动云计算 边缘计算 计算机网络 移动设备 GSM演进的增强数据速率 人工智能 操作系统
作者
Huaming Wu,Ziru Zhang,Chang Guan,Katinka Wolter,Minxian Xu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (9): 8099-8110 被引量:213
标识
DOI:10.1109/jiot.2020.2996784
摘要

City Internet-of-Things (IoT) applications are becoming increasingly complicated and thus require large amounts of computational resources and strict latency requirements. Mobile cloud computing (MCC) is an effective way to alleviate the limitation of computation capacity by offloading complex tasks from mobile devices (MDs) to central clouds. Besides, mobile-edge computing (MEC) is a promising technology to reduce latency during data transmission and save energy by providing services in a timely manner. However, it is still difficult to solve the task offloading challenges in heterogeneous cloud computing environments, where edge clouds and central clouds work collaboratively to satisfy the requirements of city IoT applications. In this article, we consider the heterogeneity of edge and central cloud servers in the offloading destination selection. To jointly optimize the system utility and the bandwidth allocation for each MD, we establish a hybrid offloading model, including the collaboration of MCC and MEC. A distributed deep learning-driven task offloading (DDTO) algorithm is proposed to generate near-optimal offloading decisions over the MDs, edge cloud server, and central cloud server. Experimental results demonstrate the accuracy of the DDTO algorithm, which can effectively and efficiently generate near-optimal offloading decisions in the edge and cloud computing environments. Furthermore, it achieves high performance and greatly reduces the computational complexity when compared with other offloading schemes that neglect the collaboration of heterogeneous clouds. More precisely, the DDTO scheme can improve computational performance by 63%, compared with the local-only scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初七123完成签到 ,获得积分10
2秒前
文静煜城完成签到,获得积分10
3秒前
4秒前
6秒前
文静煜城发布了新的文献求助10
6秒前
just完成签到,获得积分20
6秒前
lk发布了新的文献求助10
8秒前
乔呆驼发布了新的文献求助10
12秒前
12秒前
图图完成签到 ,获得积分10
17秒前
parker发布了新的文献求助10
17秒前
徐怀彪给徐怀彪的求助进行了留言
17秒前
九次方完成签到,获得积分10
21秒前
天使的诱惑913完成签到 ,获得积分10
22秒前
可乐不加冰完成签到 ,获得积分10
23秒前
白给完成签到,获得积分10
23秒前
dfgh完成签到,获得积分10
23秒前
26秒前
天天快乐应助霍冰旋采纳,获得10
29秒前
Sunday完成签到 ,获得积分10
29秒前
30秒前
33秒前
外星人完成签到,获得积分20
35秒前
孙燕应助迟迟采纳,获得10
37秒前
38秒前
葶ting完成签到 ,获得积分10
40秒前
科研通AI5应助大大的DY采纳,获得30
40秒前
chen发布了新的文献求助10
40秒前
小饶完成签到,获得积分10
42秒前
42秒前
fenghuo发布了新的文献求助10
44秒前
Duke发布了新的文献求助10
44秒前
霍冰旋发布了新的文献求助10
46秒前
49秒前
Ayyyy发布了新的文献求助10
49秒前
薯条发布了新的文献求助20
50秒前
天天快乐应助幽幽采纳,获得10
52秒前
大大的DY发布了新的文献求助30
56秒前
58秒前
小马甲应助vtfangfangfang采纳,获得10
58秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833541
求助须知:如何正确求助?哪些是违规求助? 3376064
关于积分的说明 10491471
捐赠科研通 3095564
什么是DOI,文献DOI怎么找? 1704474
邀请新用户注册赠送积分活动 820037
科研通“疑难数据库(出版商)”最低求助积分说明 771758