Systematic evaluation of machine learning methods for identifying human–pathogen protein–protein interactions

计算机科学 机器学习 代表(政治) 人工智能 鉴定(生物学) 特征(语言学) 蛋白质测序 寄主(生物学) 蛋白质-蛋白质相互作用 序列(生物学) 计算生物学
作者
Huaming Chen,Fuyi Li,Lei Wang,Yaochu Jin,Chi-Hung Chi,Lukasz Kurgan,Jiangning Song,Jun Shen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (3) 被引量:7
标识
DOI:10.1093/bib/bbaa068
摘要

Abstract In recent years, high-throughput experimental techniques have significantly enhanced the accuracy and coverage of protein–protein interaction identification, including human–pathogen protein–protein interactions (HP-PPIs). Despite this progress, experimental methods are, in general, expensive in terms of both time and labour costs, especially considering that there are enormous amounts of potential protein-interacting partners. Developing computational methods to predict interactions between human and bacteria pathogen has thus become critical and meaningful, in both facilitating the detection of interactions and mining incomplete interaction maps. In this paper, we present a systematic evaluation of machine learning-based computational methods for human–bacterium protein–protein interactions (HB-PPIs). We first reviewed a vast number of publicly available databases of HP-PPIs and then critically evaluate the availability of these databases. Benefitting from its well-structured nature, we subsequently preprocess the data and identified six bacterium pathogens that could be used to study bacterium subjects in which a human was the host. Additionally, we thoroughly reviewed the literature on ‘host–pathogen interactions’ whereby existing models were summarized that we used to jointly study the impact of different feature representation algorithms and evaluate the performance of existing machine learning computational models. Owing to the abundance of sequence information and the limited scale of other protein-related information, we adopted the primary protocol from the literature and dedicated our analysis to a comprehensive assessment of sequence information and machine learning models. A systematic evaluation of machine learning models and a wide range of feature representation algorithms based on sequence information are presented as a comparison survey towards the prediction performance evaluation of HB-PPIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小羊佳佳发布了新的文献求助10
1秒前
chengzi发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
奋斗藏花发布了新的文献求助10
2秒前
111完成签到,获得积分10
2秒前
Jasper应助传统的博涛采纳,获得10
3秒前
minguk关注了科研通微信公众号
4秒前
点金石发布了新的文献求助10
6秒前
芜湖完成签到,获得积分10
6秒前
斯文黎云发布了新的文献求助20
7秒前
yls发布了新的文献求助10
7秒前
852应助DONG采纳,获得30
8秒前
zyy发布了新的文献求助10
9秒前
PAIDAXXXX完成签到,获得积分10
9秒前
深情安青应助chengzi采纳,获得10
10秒前
ahhhhkkkha发布了新的文献求助10
11秒前
12秒前
12秒前
14秒前
Dc完成签到,获得积分10
14秒前
16秒前
NexusExplorer应助yls采纳,获得10
16秒前
Agrale完成签到 ,获得积分10
18秒前
哟嚛发布了新的文献求助10
19秒前
kiuikiu发布了新的文献求助10
20秒前
JKIKU完成签到 ,获得积分10
22秒前
大腚疯猪应助橘子采纳,获得20
25秒前
诸葛御风应助yy采纳,获得10
26秒前
迷路的书南应助嘉嘉采纳,获得10
27秒前
小二郎应助小羊佳佳采纳,获得10
29秒前
30秒前
不穷知识发布了新的文献求助10
30秒前
chayue完成签到,获得积分10
30秒前
少7一点8完成签到,获得积分10
32秒前
33秒前
SciGPT应助子车万仇采纳,获得10
33秒前
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
SQL vs NoSQL: Six Systems Compared 401
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796582
求助须知:如何正确求助?哪些是违规求助? 3341785
关于积分的说明 10307798
捐赠科研通 3058389
什么是DOI,文献DOI怎么找? 1678185
邀请新用户注册赠送积分活动 805918
科研通“疑难数据库(出版商)”最低求助积分说明 762841