Systematic evaluation of machine learning methods for identifying human–pathogen protein–protein interactions

计算机科学 机器学习 代表(政治) 人工智能 鉴定(生物学) 特征(语言学) 蛋白质测序 寄主(生物学) 蛋白质-蛋白质相互作用 序列(生物学) 计算生物学
作者
Huaming Chen,Fuyi Li,Lei Wang,Yaochu Jin,Chi-Hung Chi,Lukasz Kurgan,Jiangning Song,Jun Shen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (3) 被引量:7
标识
DOI:10.1093/bib/bbaa068
摘要

Abstract In recent years, high-throughput experimental techniques have significantly enhanced the accuracy and coverage of protein–protein interaction identification, including human–pathogen protein–protein interactions (HP-PPIs). Despite this progress, experimental methods are, in general, expensive in terms of both time and labour costs, especially considering that there are enormous amounts of potential protein-interacting partners. Developing computational methods to predict interactions between human and bacteria pathogen has thus become critical and meaningful, in both facilitating the detection of interactions and mining incomplete interaction maps. In this paper, we present a systematic evaluation of machine learning-based computational methods for human–bacterium protein–protein interactions (HB-PPIs). We first reviewed a vast number of publicly available databases of HP-PPIs and then critically evaluate the availability of these databases. Benefitting from its well-structured nature, we subsequently preprocess the data and identified six bacterium pathogens that could be used to study bacterium subjects in which a human was the host. Additionally, we thoroughly reviewed the literature on ‘host–pathogen interactions’ whereby existing models were summarized that we used to jointly study the impact of different feature representation algorithms and evaluate the performance of existing machine learning computational models. Owing to the abundance of sequence information and the limited scale of other protein-related information, we adopted the primary protocol from the literature and dedicated our analysis to a comprehensive assessment of sequence information and machine learning models. A systematic evaluation of machine learning models and a wide range of feature representation algorithms based on sequence information are presented as a comparison survey towards the prediction performance evaluation of HB-PPIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小龙完成签到,获得积分10
刚刚
1秒前
zhs完成签到,获得积分10
1秒前
29完成签到 ,获得积分10
2秒前
酷波er应助小九采纳,获得10
2秒前
spring完成签到,获得积分10
2秒前
肉卷子完成签到,获得积分10
3秒前
潘昌祥完成签到,获得积分10
3秒前
传奇3应助momo采纳,获得10
4秒前
4秒前
Owen应助yuyu采纳,获得10
4秒前
ygm发布了新的文献求助10
5秒前
Close关注了科研通微信公众号
6秒前
ZNX完成签到,获得积分10
6秒前
6秒前
哇哈哈完成签到,获得积分20
6秒前
7秒前
7秒前
8秒前
张玮关注了科研通微信公众号
8秒前
8秒前
李健的小迷弟应助江阳宏采纳,获得10
8秒前
9秒前
DungHoang完成签到,获得积分10
9秒前
HYCT完成签到,获得积分10
9秒前
9秒前
JISOO完成签到 ,获得积分10
9秒前
彭于晏应助pengze采纳,获得30
9秒前
怕孤单的破茧完成签到,获得积分10
10秒前
HH发布了新的文献求助10
11秒前
SciGPT应助缓慢弼采纳,获得10
11秒前
11秒前
摸鱼大王发布了新的文献求助10
11秒前
研友_VZG7GZ应助标致的凡旋采纳,获得10
11秒前
科研通AI6应助天天向上采纳,获得30
11秒前
Phil完成签到 ,获得积分10
12秒前
12秒前
张润琦发布了新的文献求助10
12秒前
syttttt发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5404576
求助须知:如何正确求助?哪些是违规求助? 4522954
关于积分的说明 14091850
捐赠科研通 4436730
什么是DOI,文献DOI怎么找? 2435212
邀请新用户注册赠送积分活动 1427559
关于科研通互助平台的介绍 1405929