In vivo models and decision trees for formulation development in early drug development: A review of current practices and recommendations for biopharmaceutical development

生物制药 药物开发 生物信息学 决策树 生化工程 鉴定(生物学) 计算机科学 风险分析(工程) 药物发现 生物技术 药品 计算生物学 管理科学 运筹学 医学 药理学 生物信息学 工程类 人工智能 化学 生物 基因 植物 生物化学
作者
Patricia Zane,Hille Gieschen,Elisabeth Kersten,Neil Mathias,Céline Ollier,Pernilla Johansson,An Van den Bergh,Sandy Van Hemelryck,Andreas Reichel,Andrea Rotgeri,Kerstin Schäfer,Anette Müllertz,Peter Langguth
出处
期刊:European Journal of Pharmaceutics and Biopharmaceutics [Elsevier BV]
卷期号:142: 222-231 被引量:23
标识
DOI:10.1016/j.ejpb.2019.06.010
摘要

The ability to predict new chemical entity performance using in vivo animal models has been under investigation for more than two decades. Pharmaceutical companies use their own strategies to make decisions on the most appropriate formulation starting early in development. In this paper the biopharmaceutical decision trees available in four EFPIA partners (Bayer, Boehringer Ingelheim, Bristol Meyers Squibb and Janssen) were discussed by 7 companies of which 4 had no decision tree currently defined. The strengths, weaknesses and opportunities for improvement are discussed for each decision tree. Both pharmacokineticists and preformulation scientists at the drug discovery & development interface responsible for lead optimization and candidate selection contributed to an overall picture of how formulation decisions are progressed. A small data set containing compound information from the database designed for the IMI funded OrBiTo project is examined for interrelationships between measured physicochemical, dissolution and relative bioavailability parameters. In vivo behavior of the drug substance and its formulation in First in human (FIH) studies cannot always be well predicted from in vitro and/or in silico tools alone at the time of selection of a new chemical entity (NCE). Early identification of the risks, challenges and strategies to prepare for formulations that provide sufficient preclinical exposure in animal toxicology studies and in FIH clinical trials is needed and represents an essential part of the IMI funded OrBiTo project. This article offers a perspective on the use of in vivo models and biopharmaceutical decision trees in the development of new oral drug products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vivian完成签到 ,获得积分10
1秒前
1秒前
2秒前
4秒前
关关完成签到 ,获得积分10
4秒前
5秒前
akakns完成签到 ,获得积分10
6秒前
guowu完成签到 ,获得积分10
7秒前
tunerling完成签到,获得积分10
8秒前
椰果发布了新的文献求助10
9秒前
科研通AI5应助yangmiemie采纳,获得10
10秒前
LLQ发布了新的文献求助10
11秒前
莓烦恼完成签到 ,获得积分10
12秒前
LLQ完成签到,获得积分20
21秒前
黄飞完成签到,获得积分10
21秒前
Silence完成签到 ,获得积分10
23秒前
CipherSage应助北斗HH采纳,获得10
23秒前
24秒前
学习使勇哥进步完成签到 ,获得积分10
26秒前
sunflowers完成签到 ,获得积分10
27秒前
张涛发布了新的文献求助10
29秒前
29秒前
orixero应助魏伯安采纳,获得10
30秒前
31秒前
31秒前
32秒前
灰鸽舞完成签到 ,获得积分10
33秒前
北斗HH发布了新的文献求助10
34秒前
34秒前
研友_VZG7GZ应助朝北采纳,获得10
35秒前
noss发布了新的文献求助10
35秒前
35秒前
斯寜应助Ambition采纳,获得10
36秒前
NexusExplorer应助kk采纳,获得10
36秒前
xy820完成签到,获得积分20
36秒前
37秒前
xy820发布了新的文献求助10
39秒前
魏伯安发布了新的文献求助10
40秒前
40秒前
bfbdfbdf发布了新的文献求助20
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776406
求助须知:如何正确求助?哪些是违规求助? 3321789
关于积分的说明 10207888
捐赠科研通 3037141
什么是DOI,文献DOI怎么找? 1666556
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757872