In vivo models and decision trees for formulation development in early drug development: A review of current practices and recommendations for biopharmaceutical development

生物制药 药物开发 生物信息学 决策树 生化工程 鉴定(生物学) 计算机科学 风险分析(工程) 药物发现 生物技术 药品 计算生物学 管理科学 运筹学 医学 药理学 生物信息学 工程类 化学 数据挖掘 生物 基因 植物 生物化学
作者
Patricia Zane,Hille Gieschen,Elisabeth Kersten,Neil Mathias,Céline Ollier,Pernilla Johansson,An Van den Bergh,Sandy Van Hemelryck,Andreas Reichel,Andrea Rotgeri,Kerstin Schäfer,Anette Müllertz,Peter Langguth
出处
期刊:European Journal of Pharmaceutics and Biopharmaceutics [Elsevier]
卷期号:142: 222-231 被引量:27
标识
DOI:10.1016/j.ejpb.2019.06.010
摘要

The ability to predict new chemical entity performance using in vivo animal models has been under investigation for more than two decades. Pharmaceutical companies use their own strategies to make decisions on the most appropriate formulation starting early in development. In this paper the biopharmaceutical decision trees available in four EFPIA partners (Bayer, Boehringer Ingelheim, Bristol Meyers Squibb and Janssen) were discussed by 7 companies of which 4 had no decision tree currently defined. The strengths, weaknesses and opportunities for improvement are discussed for each decision tree. Both pharmacokineticists and preformulation scientists at the drug discovery & development interface responsible for lead optimization and candidate selection contributed to an overall picture of how formulation decisions are progressed. A small data set containing compound information from the database designed for the IMI funded OrBiTo project is examined for interrelationships between measured physicochemical, dissolution and relative bioavailability parameters. In vivo behavior of the drug substance and its formulation in First in human (FIH) studies cannot always be well predicted from in vitro and/or in silico tools alone at the time of selection of a new chemical entity (NCE). Early identification of the risks, challenges and strategies to prepare for formulations that provide sufficient preclinical exposure in animal toxicology studies and in FIH clinical trials is needed and represents an essential part of the IMI funded OrBiTo project. This article offers a perspective on the use of in vivo models and biopharmaceutical decision trees in the development of new oral drug products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
是大卉发布了新的文献求助10
刚刚
踏实威完成签到,获得积分10
刚刚
37layer发布了新的文献求助10
1秒前
123发布了新的文献求助10
3秒前
能甜葡萄完成签到 ,获得积分10
3秒前
3秒前
奥润之完成签到,获得积分10
5秒前
乐乐应助泰裤辣采纳,获得10
7秒前
Y先生发布了新的文献求助30
7秒前
7秒前
火星上的莹完成签到,获得积分20
8秒前
Menand完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
wellwell完成签到,获得积分10
9秒前
10秒前
苏州小北完成签到,获得积分10
11秒前
野性的如波完成签到,获得积分10
11秒前
Dxy-TOFA发布了新的文献求助20
12秒前
12秒前
科研通AI2S应助调皮的太兰采纳,获得10
12秒前
sci大户发布了新的文献求助10
13秒前
14秒前
静_静完成签到 ,获得积分10
15秒前
Apei给Apei的求助进行了留言
15秒前
这周发布了新的文献求助10
16秒前
NEXUS1604完成签到,获得积分10
18秒前
搜集达人应助小白采纳,获得10
19秒前
海鸥跳海发布了新的文献求助10
19秒前
无花果应助老雪半糖加冰采纳,获得10
19秒前
Guangjie920完成签到,获得积分10
20秒前
雨田发布了新的文献求助10
20秒前
XiaoMaomi完成签到,获得积分10
21秒前
wanci应助单薄雅阳采纳,获得10
21秒前
21秒前
22秒前
QianYang发布了新的文献求助50
23秒前
23秒前
wwwwppp完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653351
求助须知:如何正确求助?哪些是违规求助? 4789770
关于积分的说明 15063822
捐赠科研通 4811874
什么是DOI,文献DOI怎么找? 2574163
邀请新用户注册赠送积分活动 1529858
关于科研通互助平台的介绍 1488577