Machine Learning to Differentiate T2-Weighted Hyperintense Uterine Leiomyomas from Uterine Sarcomas by Utilizing Multiparametric Magnetic Resonance Quantitative Imaging Features

磁共振成像 医学 平滑肌瘤 子宫肌瘤 放射科
作者
Masataka Nakagawa,Takeshi Nakaura,Tomohiro Namimoto,Yuji Iyama,Masafumi Kidoh,Kenichiro Hirata,Yasunori Nagayama,Hideaki Yuki,Seitaro Oda,Daisuke Utsunomiya,Yasuyuki Yamashita
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:26 (10): 1390-1399 被引量:31
标识
DOI:10.1016/j.acra.2018.11.014
摘要

Rationale and Objective

Uterine leiomyomas with high signal intensity on T2-weighted imaging (T2WI) can be difficult to distinguish from sarcomas. This study assessed the feasibility of using machine learning to differentiate uterine sarcomas from leiomyomas with high signal intensity on T2WI on multiparametric magnetic resonance imaging.

Materials and Methods

This retrospective study included 80 patients (50 with benign leiomyoma and 30 with uterine sarcoma) who underwent pelvic 3 T magnetic resonance imaging examination for the evaluation of uterine myometrial smooth muscle masses with high signal intensity on T2WI. We used six machine learning techniques to develop prediction models based on 12 texture parameters on T1WI and T2WI, apparent diffusion coefficient maps, and contrast-enhanced T1WI, as well as tumor size and age. We calculated the areas under the curve (AUCs) using receiver-operating characteristic analysis for each model by 10-fold cross-validation and compared these to those for two board-certified radiologists.

Results

The eXtreme Gradient Boosting model gave the highest AUC (0.93), followed by the random forest, support vector machine, multilayer perceptron, k-nearest neighbors, and logistic regression models. Age was the most important factor for differentiation (leiomyoma 44.9 ± 11.1 years; sarcoma 58.9 ± 14.7 years; p < 0.001). The AUC for the eXtreme Gradient Boosting was significantly higher than those for both radiologists (0.93 vs 0.80 and 0.68, p = 0.03 and p < 0.001, respectively).

Conclusion

Machine learning outperformed experienced radiologists in the differentiation of uterine sarcomas from leiomyomas with high signal intensity on T2WI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土味之子关注了科研通微信公众号
刚刚
科研通AI2S应助听话的寒天采纳,获得10
1秒前
3秒前
852应助贰什柒采纳,获得10
4秒前
美丽热狗完成签到 ,获得积分20
5秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
入道雲完成签到,获得积分10
10秒前
12秒前
zbzfp完成签到,获得积分10
12秒前
今后应助Toutle采纳,获得10
13秒前
芝士蛋糕完成签到,获得积分10
13秒前
科研通AI2S应助lizhiqian2024采纳,获得10
13秒前
15秒前
文静煜城发布了新的文献求助10
16秒前
好吃鱼完成签到,获得积分10
17秒前
18秒前
jenningseastera应助YL采纳,获得20
18秒前
18秒前
19秒前
直率的画笔完成签到,获得积分10
20秒前
英俊的铭应助奎花籽采纳,获得10
20秒前
暴躁的溪流完成签到,获得积分10
21秒前
格格完成签到 ,获得积分10
22秒前
lxcy0612发布了新的文献求助30
22秒前
淡淡的浩天完成签到,获得积分20
23秒前
hanhan发布了新的文献求助10
24秒前
gg发布了新的文献求助10
24秒前
26秒前
无花果应助韩野采纳,获得30
27秒前
科研通AI2S应助文静煜城采纳,获得10
28秒前
orixero应助gg采纳,获得10
30秒前
30秒前
鱼死网破发布了新的文献求助10
31秒前
32秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802485
求助须知:如何正确求助?哪些是违规求助? 3348111
关于积分的说明 10336668
捐赠科研通 3064039
什么是DOI,文献DOI怎么找? 1682365
邀请新用户注册赠送积分活动 808078
科研通“疑难数据库(出版商)”最低求助积分说明 763997