Synthesis and characterization of different sodium hyaluronate nanoparticles to transport large neurotherapheutic molecules through blood brain barrier after stroke

渗透(战争) 血脑屏障 纳米颗粒 材料科学 聚合物 生物物理学 纳米技术 生物医学工程 中枢神经系统 医学 复合材料 运筹学 生物 工程类 内分泌学
作者
Sebastián Peralta,Santos Blanco,Raquel Hernández,Herminia Castán,Eva Siles,Esther Martínez‐Lara,María Encarnación Morales,María Ángeles Peinado,María Adolfina Ruiz
出处
期刊:European Polymer Journal [Elsevier BV]
卷期号:112: 433-441 被引量:6
标识
DOI:10.1016/j.eurpolymj.2019.01.030
摘要

Some biological drugs with proven neuroprotective capacity are unable to cross the blood brain barrier (BBB), preventing its use in neuroregenerative diseases such as stroke. The use of nanoparticles as a delivery system to transport large therapeutic molecules to the cerebral parenchyma may be a good option to overcome this limitation. To achieve this goal, we have designed some polymer nanoparticles (NPs) by two ionic gelation methods of synthesis: external (M1) and internal (M2), both using sodium hyaluronate (SH) as polymer but with differences in the elaboration of their core. Additionally, both SH-NPs were coated with chitosan and glycerol tripalmitin in order to improve their penetration capabilities into cells. The nanoparticles were characterized by size, shape and charge. Then, an experimental approach was carried out in animals submitted to a stroke model, where NPs penetration into the brain was studied and analysed after its systemic administration. All types of NPs assayed were able to cross the BBB and were endocytosed by neurons; however, the SH-NPs obtained by M2 are lightly more efficient in the rate of penetration than those obtained by M1. There were not visible differences between coated and non-coated NPs obtained by both gelation methods. This may be due to the fact that not only the size, shape and charge of NPs, but also its chemical structure influences its cellular capture by endocytic mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fred发布了新的文献求助30
1秒前
活ni的pig完成签到 ,获得积分10
1秒前
eeeee发布了新的文献求助10
4秒前
遇见0608发布了新的文献求助10
4秒前
4秒前
花莫凋零发布了新的文献求助10
4秒前
科研通AI5应助dyfsj采纳,获得10
5秒前
9秒前
可爱的函函应助fred采纳,获得10
9秒前
无限的山水完成签到,获得积分10
10秒前
G浅浅完成签到,获得积分10
10秒前
YanDongXu完成签到 ,获得积分10
12秒前
12秒前
非要叫我起个昵称完成签到,获得积分10
13秒前
14秒前
15秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
17秒前
kaifeiQi完成签到,获得积分10
18秒前
fred完成签到,获得积分10
18秒前
dyfsj发布了新的文献求助10
19秒前
专一的纸飞机完成签到,获得积分20
19秒前
22秒前
星际帅帅完成签到,获得积分10
25秒前
27秒前
iNk应助默默的尔丝采纳,获得20
28秒前
不敢自称科研人完成签到,获得积分10
29秒前
xxyhh完成签到,获得积分20
29秒前
29秒前
花莫凋零完成签到 ,获得积分10
29秒前
安静寄风发布了新的文献求助10
32秒前
33秒前
hs完成签到,获得积分10
41秒前
zjh完成签到,获得积分10
41秒前
默默的尔丝完成签到,获得积分10
42秒前
洛希极限发布了新的文献求助10
43秒前
Accept2024完成签到,获得积分10
44秒前
pluto应助xxyhh采纳,获得10
45秒前
是我呀小夏完成签到 ,获得积分10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781364
求助须知:如何正确求助?哪些是违规求助? 3326849
关于积分的说明 10228589
捐赠科研通 3041878
什么是DOI,文献DOI怎么找? 1669613
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751