化学
谷胱甘肽S-转移酶
谷胱甘肽
细胞凋亡
癌症研究
激酶
生物
生物化学
酶
细胞生物学
干细胞
作者
Kanakaraju Manupati,Sudhan Debnath,Kalyan Goswami,Priyanka Bhoj,Hemant S. Chandak,Sandeep P. Bahekar,Amitava Das
出处
期刊:FEBS Journal
[Wiley]
日期:2019-03-15
卷期号:286 (11): 2167-2192
被引量:41
摘要
Glutathione S-transferase omega 1 (GSTO1) contributes to the inactivation of a wide range of drug compounds via conjugation to glutathione during phase reactions. Chemotherapy-induced GSTO1 expression in breast cancer cells leads to chemoresistance and promotes metastasis. In search of novel GSTO1 inhibitors, we identified S2E, a thia-Michael adduct of sulfonamide chalcone with low LC50 (3.75 ± 0.73 μm) that binds to the active site of GSTO1, as revealed by molecular docking (glide score: -8.1), cellular thermal shift assay and fluorescence quenching assay (Kb ≈ 10 × 105 mol·L-1 ). Docking studies confirmed molecular interactions between GSTO1 and S2E, and identified the hydrogen bond donor Val-72 (2.14 Å) and hydrogen bond acceptor Ser-86 (2.77 Å). Best pharmacophore hypotheses could effectively map S2E and identified the 4-methyl group of the benzene sulfonamide ring as crucial to its anti-cancer activity. Lack of a thiophenyl group in another analog, 2e, reduced its efficacy as observed by cytotoxicity and pharmacophore matching. Furthermore, GSTO1 inhibition by S2E, along with tamoxifen, led to a significant increase in apoptosis and decreased migration of aggressive MDA-MB-231 cells, as well as significantly decreased migration, invasion and mammosphere formation in sorted breast cancer stem cells (CSCs, CD24- /CD44+ ). GSTO1 silencing in breast CSCs also significantly increased apoptosis and decreased migration. Mechanistically, GSTO1 inhibition activated the c-Jun N-terminal kinase stress kinase, inducing a mitochondrial apoptosis signaling pathway in breast CSCs via the pro-apoptotic proteins BAX, cytochrome c and cleaved caspase 3. Our study elucidated the role of the GSTO1 inhibitor S2E as a potential therapeutic strategy for preventing chemotherapy-induced breast CSC-mediated cancer metastasis and recurrence.
科研通智能强力驱动
Strongly Powered by AbleSci AI