纳米材料
化学
最小抑制浓度
杀生物剂
核化学
最低杀菌浓度
纳米技术
环境化学
抗菌剂
材料科学
有机化学
作者
Joanne Vassallo,Alexandros Besinis,Rich Boden,Richard D. Handy
标识
DOI:10.1016/j.ecoenv.2018.06.085
摘要
There are now over a thousand nano-containing products on the market and the antibacterial properties of some nanomaterials has created interest in their use as cleaning agents, biocides and disinfectants. Engineered nanomaterials (ENMs) are being released into the environment and this raises concerns about their effects on microbes in the receiving ecosystems. This study evaluated the bacterial toxicity of a wide range of nanomaterials with different surface coatings on Escherichia coli K-12 MG1655. The minimum inhibitory concentration (MIC) assay, which quantifies the threshold for growth inhibition in suspensions of bacteria, was used to rank the toxicity of silver (Ag), cupric oxide (CuO), cadmium telluride (CdTe) quantum dots, titanium dioxide (TiO2), nanodiamonds and multi-walled carbon nanotubes (MWCNTs). Bacteria were exposed for 12 h at 37 °C to a dilution series of the test suspensions in 96-well plates. The precision and accuracy of the method was good with coefficients of variation < 10%. In terms of the measured MIC values, the toxicity order of the ENMs was as follows: CdTe quantum dots ammonium-coated, 6 mg L-1 > Ag nanoparticles, 12 mg L-1 > CdTe quantum dots carboxylate-coated, 25 mg L-1 > CdTe quantum dots polyethylene glycol-coated, 100 mg L-1. The MIC values were above the highest test concentration used (100 mg L-1) for CuO, TiO2, nanodiamonds and MWCNTs, indicating low toxicity. The MIC assay can be a useful tool for the initial steps of ENMs hazard assessment.
科研通智能强力驱动
Strongly Powered by AbleSci AI