A data-driven approach to full-field nonlinear stress distribution and failure pattern prediction in composites using deep learning

非线性系统 应力场 压力(语言学) 领域(数学) 复合材料 有限元法 结构工程 材料科学 工程类 数学 物理 语言学 量子力学 哲学 纯数学
作者
Reza Sepasdar,Anuj Karpatne,Maryam Shakiba
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:397: 115126-115126 被引量:62
标识
DOI:10.1016/j.cma.2022.115126
摘要

An image-based deep learning framework is developed to predict nonlinear stress distribution and failure pattern in microstructural representations of composite materials in this paper. The work is motivated by the complexity and computational cost of high-fidelity simulations of such materials. The proposed deep learning framework predicts the post-failure full-field stress distribution and the crack pattern in two-dimensional representations of the composites based on their microstructures. The deep learning framework contains two stacked fully-convolutional networks, namely, Generator 1 and Generator 2, trained sequentially. First, Generator 1 learns to translate the microstructural geometry to the full-field post-failure stress distribution. Then, Generator 2 learns to translate the output of Generator 1 to the failure pattern. A physics-informed loss function is also designed and incorporated to further improve the performance of the proposed framework and facilitate the validation process. The material of interest is selected to be a unidirectional carbon fiber-reinforced polymer composite. 4500 microstructural representations are synthetically generated and simulated using an efficient finite element framework to provide a sufficiently large data set for training and validating the deep learning framework. It is shown that the proposed deep learning approach can predict the composites’ post-failure full-field stress distribution and failure pattern, two of the most complex phenomena to simulate in computational solid mechanics, with an impressive accuracy of 90%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
关达完成签到,获得积分20
刚刚
传奇3应助安慧容采纳,获得10
1秒前
3秒前
任性凤凰发布了新的文献求助10
4秒前
小蘑菇应助zzzz采纳,获得10
5秒前
扳迪发布了新的文献求助10
5秒前
卷毛狗发布了新的文献求助10
6秒前
多和5的武器完成签到,获得积分10
7秒前
张振宇完成签到 ,获得积分10
11秒前
11秒前
zhou完成签到,获得积分10
13秒前
任性凤凰完成签到,获得积分20
14秒前
倪倪完成签到,获得积分10
16秒前
qs发布了新的文献求助10
16秒前
我是老大应助首席或雪月采纳,获得10
17秒前
Atom完成签到,获得积分10
18秒前
彬子完成签到,获得积分10
18秒前
在水一方应助changnan采纳,获得10
19秒前
21秒前
adam完成签到,获得积分10
21秒前
mc发布了新的文献求助10
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
pluto应助科研通管家采纳,获得10
22秒前
qiao应助科研通管家采纳,获得10
22秒前
22秒前
Lucas应助任性凤凰采纳,获得10
23秒前
大咖发布了新的文献求助10
25秒前
潘辉完成签到,获得积分10
26秒前
科研通AI5应助三幅画采纳,获得10
27秒前
科研通AI5应助三幅画采纳,获得10
27秒前
匀速前行发布了新的文献求助10
27秒前
夏小安完成签到,获得积分10
28秒前
28秒前
马哥二弟无敌完成签到 ,获得积分10
30秒前
31秒前
32秒前
liu关闭了liu文献求助
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331226
关于积分的说明 10250759
捐赠科研通 3046728
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801071
科研通“疑难数据库(出版商)”最低求助积分说明 759979