Performance comparison of r2SCAN and SCAN metaGGA density functionals for solid materials via an automated, high-throughput computational workflow

工作流程 吞吐量 密度泛函理论 水准点(测量) 计算机科学 计算科学 算法 趋同(经济学) 计算化学 化学 电信 大地测量学 数据库 经济增长 经济 无线 地理
作者
Ryan Kingsbury,Ayush S. Gupta,Christopher J. Bartel,Jason M. Munro,Shyam Dwaraknath,Matthew K. Horton,Kristin A. Persson
标识
DOI:10.33774/chemrxiv-2021-gwm9m
摘要

Computational materials discovery efforts utilize hundreds or thousands of density functional theory (DFT) calculations to predict material properties. Historically, such efforts have performed calculations at the generalized gradient approximation (GGA) level of theory due to its efficient compromise between accuracy and computational reliability. However, high-throughput calculations at the higher metaGGA level of theory are becoming feasible. The Strongly Constrainted and Appropriately Normed (SCAN) metaGGA functional offers superior accuracy to GGA across much of chemical space, making it appealing as a general-purpose metaGGA functional, but it suffers from numerical instabilities that impede it's use in high-throughput workflows. The recently-developed r2SCAN metaGGA functional promises accuracy similar to SCAN in addition to more robust numerical performance. However, its performance compared to SCAN has yet to be evaluated over a large group of solid materials. In this work, we compared r2SCAN and SCAN predictions for key properties of approximately 6,000 solid materials using a newly-developed high-throughput computational workflow. We find that r2SCAN predicts formation energies more accurately than SCAN and PBEsol for both strongly- and weakly-bound materials and that r2SCAN predicts systematically larger lattice constants than SCAN. We also find that r2SCAN requires modestly fewer computational resources than SCAN and offers much more reliable convergence. Thus, our large-scale benchmark confirms that r2SCAN has delivered on its promises of numerical efficiency and accuracy, making it an ideal choice for high-throughput metaGGA calculations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李向东完成签到,获得积分10
1秒前
qiao应助xxx7749采纳,获得10
2秒前
乐正广山发布了新的文献求助10
3秒前
大眼的平松完成签到,获得积分10
4秒前
ysh完成签到 ,获得积分10
6秒前
高大的冰双完成签到,获得积分10
8秒前
研友_VZG7GZ应助乐正广山采纳,获得10
9秒前
19秒前
bill完成签到,获得积分10
20秒前
20秒前
Sylvia完成签到,获得积分10
21秒前
SSYZ完成签到,获得积分10
22秒前
SSYZ发布了新的文献求助10
25秒前
岁岁完成签到,获得积分10
26秒前
dyfsj发布了新的文献求助10
26秒前
29秒前
dyfsj完成签到,获得积分10
33秒前
miu发布了新的文献求助10
33秒前
48秒前
rong完成签到 ,获得积分10
48秒前
nan完成签到,获得积分10
50秒前
51秒前
专注完成签到,获得积分10
53秒前
54秒前
qiao应助xxx7749采纳,获得10
55秒前
657发布了新的文献求助10
55秒前
机灵的冰夏完成签到,获得积分10
56秒前
young发布了新的文献求助10
56秒前
cjj完成签到,获得积分10
57秒前
Meteor636完成签到 ,获得积分10
57秒前
tong发布了新的文献求助10
1分钟前
领导范儿应助young采纳,获得10
1分钟前
长情箴完成签到 ,获得积分10
1分钟前
乐观的香菱完成签到,获得积分10
1分钟前
1分钟前
hcmsaobang2001完成签到,获得积分10
1分钟前
悦耳的颜完成签到,获得积分10
1分钟前
小白完成签到,获得积分10
1分钟前
赛因斯完成签到,获得积分10
1分钟前
垃圾桶完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781306
求助须知:如何正确求助?哪些是违规求助? 3326832
关于积分的说明 10228424
捐赠科研通 3041839
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751