Evaluation of Different Machine Learning Frameworks to Estimate CO2 Solubility in NaCl Brines: Implications for CO2 Injection into Low-Salinity Formations

溶解度 盐度 溶解 卤水 多层感知器 二氧化碳 机器学习 土壤科学 热力学 化学 环境科学 计算机科学 地质学 人工神经网络 有机化学 物理 海洋学
作者
Erfan Mohammadian,Bo Liu,Amin Riazi
出处
期刊:Lithosphere [Geological Society of America]
卷期号:2022 (Special 12) 被引量:12
标识
DOI:10.2113/2022/1615832
摘要

Abstract An accurate estimation of carbon dioxide (CO2) solubility in brine is of great significance for industrial applications such as quantifying CO2 sequestration in subsurface formations, CO2 surface mixing, and different CO2-based enhanced recovery methods (EOR). In this research, four different data-driven/machine learning techniques, extreme gradient boosting (XGB), multilayer perceptron (MLP), K-nearest neighbor (KNN), and in-house genetic algorithm (GA), were used to estimate solubility in terms of pressure, temperature, and salinity. Pressure, temperature, and salinity were used as model inputs, while CO2 solubility was the output. The experimental database used in this study was collected by dissolving CO2 into NaCl brines at salinity ranging from 0 to 15000 ppm, temperature ranging from 298 to 373 K, and pressures up to 200 atm. All data-driven models accurately estimated solubility through a coefficient of correlation (R2) ranging from 0.95 to 0.99, and a precise simple-to-use empirical solubility equation was developed using GA. The performance of the models was analyzed using proper model metrics (such as mean absolute error and relative error). A detailed feature importance analysis was conducted using feature importance, permutation, and Shapley values to clarify the correlation between the input and output parameters. The pressure was found to be the most impactful feature, followed by temperature and salinity. The model’s accuracy was compared to a well-established solubility model from the literature, and a good agreement between the two models’ results was observed. Lastly, conducting sensitivity analysis on the model revealed that the model’s estimations were still accurate when pressure and salinity were beyond the scopes of the original dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的毛豆应助英俊水池采纳,获得10
刚刚
Dora完成签到,获得积分10
刚刚
123完成签到,获得积分10
1秒前
1秒前
鲍惜寒发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
siri完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
5秒前
矢思然发布了新的文献求助10
6秒前
冰魂应助心静如水采纳,获得20
6秒前
7秒前
8秒前
沉默发布了新的文献求助10
9秒前
郑小七发布了新的文献求助10
9秒前
求文献发布了新的文献求助10
9秒前
10秒前
格拉希尔完成签到 ,获得积分10
10秒前
10秒前
hohokuz发布了新的文献求助10
12秒前
Ava应助ZSmile采纳,获得10
13秒前
luxiaomo应助玩命的振家采纳,获得10
14秒前
14秒前
香蕉觅云应助自由的冬易采纳,获得10
16秒前
16秒前
Lucas应助琮博采纳,获得10
17秒前
17秒前
17秒前
科研通AI5应助吴晓敏采纳,获得10
18秒前
my完成签到,获得积分10
18秒前
19秒前
CodeCraft应助hwl26采纳,获得10
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
lucky发布了新的文献求助10
21秒前
degre发布了新的文献求助10
21秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867367
求助须知:如何正确求助?哪些是违规求助? 3409750
关于积分的说明 10664684
捐赠科研通 3133945
什么是DOI,文献DOI怎么找? 1728674
邀请新用户注册赠送积分活动 833052
科研通“疑难数据库(出版商)”最低求助积分说明 780550