Texture Features of Magnetic Resonance Images Predict Poststroke Cognitive Impairment: Validation in a Multicenter Study

医学 随机森林 磁共振成像 认知 模式识别(心理学) 认知障碍 人工智能 峰度 统计 计算机科学 放射科 数学 精神科
作者
Nacim Betrouni,Jiyang Jiang,Marco Duering,Marios K. Georgakis,Lena Oestreich,Perminder S. Sachdev,Michael O'Sullivan,Paul Wright,Jessica Lo,Régis Bordet
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:53 (11): 3446-3454 被引量:2
标识
DOI:10.1161/strokeaha.122.039732
摘要

Background: Imaging features derived from T1-weighted (T1w) images texture analysis were shown to be potential markers of poststroke cognitive impairment, with better sensitivity than atrophy measurement. However, in magnetic resonance images, the signal distribution is subject to variations and can limit transferability of the method between centers. This study examined the reliability of texture features against imaging settings using data from different centers. Methods: Data were collected from 327 patients within the Stroke and Cognition Consortium from centers in France, Germany, Australia, and the United Kingdom. T1w images were preprocessed to normalize the signal intensities and then texture features, including first- and second-order statistics, were measured in the hippocampus and the entorhinal cortex. Differences between the data led to the use of 2 methods of analysis. First, a machine learning modeling, using random forest, was used to build a poststroke cognitive impairment prediction model using one dataset and this was validated on another dataset as external unseen data. Second, the predictive ability of the texture features was examined in the 2 remaining datasets by ANCOVA with false discovery rate correction for multiple comparisons. Results: The prediction model had a mean accuracy of 90% for individual classification of patients in the learning base while for the validation base it was ≈ 77%. ANCOVA showed significant differences, in all datasets, for the kurtosis and inverse difference moment texture features when measured in patients with cognitive impairment and those without. Conclusions: These results suggest that texture features obtained from routine clinical MR images are robust early predictors of poststroke cognitive impairment and can be combined with other demographic and clinical predictors to build an accurate prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余呀余完成签到 ,获得积分10
刚刚
刚刚
笨笨亦凝完成签到,获得积分20
1秒前
笨笨亦凝发布了新的文献求助10
5秒前
5秒前
乐乐应助星空采纳,获得10
8秒前
橘络完成签到 ,获得积分10
8秒前
愉快的犀牛完成签到 ,获得积分10
8秒前
hah发布了新的文献求助20
10秒前
10秒前
12秒前
Tina完成签到 ,获得积分10
13秒前
儒雅沛凝完成签到 ,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
冰西瓜完成签到 ,获得积分10
15秒前
大勺完成签到 ,获得积分10
15秒前
昏睡的眼神完成签到 ,获得积分10
17秒前
树上种树发布了新的文献求助10
17秒前
吨吨发布了新的文献求助30
19秒前
19秒前
BJ_whc完成签到,获得积分10
19秒前
科研通AI2S应助钱念波采纳,获得10
21秒前
LLL完成签到 ,获得积分10
22秒前
24秒前
Slemon完成签到,获得积分10
25秒前
甜橘发布了新的文献求助10
25秒前
hah完成签到,获得积分10
25秒前
曾经的康乃馨完成签到 ,获得积分10
27秒前
jibenkun完成签到,获得积分10
28秒前
ppxx完成签到,获得积分10
30秒前
xinxiangshicheng完成签到 ,获得积分10
30秒前
wbb完成签到 ,获得积分10
32秒前
IP190237完成签到,获得积分0
32秒前
33秒前
odell完成签到,获得积分10
35秒前
甜橘完成签到,获得积分20
35秒前
A12138完成签到 ,获得积分10
35秒前
crazy发布了新的文献求助10
38秒前
skepticalsnails完成签到,获得积分0
39秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864053
求助须知:如何正确求助?哪些是违规求助? 3406339
关于积分的说明 10649195
捐赠科研通 3130285
什么是DOI,文献DOI怎么找? 1726356
邀请新用户注册赠送积分活动 831635
科研通“疑难数据库(出版商)”最低求助积分说明 779990