A VGG attention vision transformer network for benign and malignant classification of breast ultrasound images

人工智能 计算机科学 卷积神经网络 特征提取 人工神经网络 深度学习 超声波 模式识别(心理学) 乳腺超声检查 乳腺癌 乳腺摄影术 癌症 放射科 医学 内科学
作者
Xiaolei Qu,Hongyan Lu,Wenzhong Tang,Shuai Wang,Dezhi Zheng,Yaxin Hou,Jue Jiang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (9): 5787-5798 被引量:35
标识
DOI:10.1002/mp.15852
摘要

Breast cancer is the most commonly occurring cancer worldwide. The ultrasound reflectivity imaging technique can be used to obtain breast ultrasound (BUS) images, which can be used to classify benign and malignant tumors. However, the classification is subjective and dependent on the experience and skill of operators and doctors. The automatic classification method can assist doctors and improve the objectivity, but current convolution neural network (CNN) is not good at learning global features and vision transformer (ViT) is not good at extraction local features. In this study, we proposed a visual geometry group attention ViT (VGGA-ViT) network to overcome their disadvantages.In the proposed method, we used a CNN module to extract the local features and employed a ViT module to learn the global relationship among different regions and enhance the relevant local features. The CNN module was named the VGGA module. It was composed of a VGG backbone, a feature extraction fully connected layer, and a squeeze-and-excitation block. Both the VGG backbone and the ViT module were pretrained on the ImageNet dataset and retrained using BUS samples in this study. Two BUS datasets were employed for validation.Cross-validation was conducted on two BUS datasets. For the Dataset A, the proposed VGGA-ViT network achieved high accuracy (88.71 ±$\ \pm \ $ 1.55%), recall (90.73 ±$\ \pm \ $ 1.57%), specificity (85.58 ±$\ \pm \ $ 3.35%), precision (90.77 ±$\ \pm \ $ 1.98%), F1 score (90.73 ±$\ \pm \ $ 1.24%), and Matthews correlation coefficient (MCC) (76.34 ±7$\ \pm \ 7$ 3.29%), which were better than those of all compared previous networks in this study. The Dataset B was used as a separate test set, the test results showed that the VGGA-ViT had highest accuracy (81.72 ±$\ \pm \ $ 2.99%), recall (64.45 ±$\ \pm \ $ 2.96%), specificity (90.28 ±$\ \pm \ $ 3.51%), precision (77.08 ±$\ \pm \ $ 7.21%), F1 score (70.11 ±$\ \pm \ $ 4.25%), and MCC (57.64 ±$\ \pm \ $ 6.88%).In this study, we proposed the VGGA-ViT for the BUS classification, which was good at learning both local and global features. The proposed network achieved higher accuracy than the compared previous methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
峰林完成签到,获得积分10
刚刚
ZCY完成签到,获得积分20
1秒前
Wind完成签到,获得积分10
1秒前
一一应助白鹤采纳,获得10
1秒前
3秒前
4秒前
子衿完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
小蘑菇应助张晓天采纳,获得10
8秒前
海德堡发布了新的文献求助10
9秒前
Orange应助hy采纳,获得10
9秒前
9秒前
子衿发布了新的文献求助10
10秒前
10秒前
黎少俊发布了新的文献求助10
10秒前
Jasper应助峰林采纳,获得10
10秒前
一只椰青完成签到,获得积分20
10秒前
ZCY关注了科研通微信公众号
11秒前
12秒前
bobowang发布了新的文献求助10
12秒前
13秒前
屾哥发布了新的文献求助10
14秒前
Akim应助nnm采纳,获得10
15秒前
16秒前
不摇碧莲完成签到 ,获得积分10
16秒前
16秒前
玉1完成签到 ,获得积分10
17秒前
19秒前
19秒前
Massback发布了新的文献求助10
20秒前
20秒前
20秒前
今后应助xiaoxin采纳,获得10
20秒前
玉1关注了科研通微信公众号
21秒前
桐桐应助黎少俊采纳,获得10
21秒前
鸭梨很大发布了新的文献求助10
21秒前
22秒前
23秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799006
求助须知:如何正确求助?哪些是违规求助? 3344720
关于积分的说明 10321316
捐赠科研通 3061197
什么是DOI,文献DOI怎么找? 1680067
邀请新用户注册赠送积分活动 806880
科研通“疑难数据库(出版商)”最低求助积分说明 763435