亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Brain tumor detection from 3D MRI using Hyper‐Layer Convolutional Neural Networks and Hyper‐Heuristic Extreme Learning Machine

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 极限学习机 特征选择 深度学习 启发式 特征(语言学) 特征提取 机器学习 人工神经网络 语言学 哲学
作者
Omar Abdullah Murshed Farhan Alnaggar,Basavaraj N Jagadale,Swaroopa H. Narayan,Mufeed Ahmed Naji Saif
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:34 (24) 被引量:7
标识
DOI:10.1002/cpe.7215
摘要

Summary Automated techniques for brain tumor classification using deep learning approaches have gained significant research interest in recent years. Yet, the difficulties in extracting and classifying the tumor regions from the 3D Magnetic Resonance Imaging (MRI) do not have a definite solution. The major challenge in utilizing machine and deep learning algorithms for brain cancer classification from 3D images is the time complexity in analyzing the multiple frames of a brain MRI. This paper introduces Hyper‐Layer Convolutional Neural Networks (HL‐CNN) and Hyper‐Heuristic Extreme Learning Machine (HH‐ELM). The proposed method consists of three main phases are pre‐processing, deep feature mining and selection, and classification. The input MRI images are pre‐processed through denoising and image enhancement methods in the first phase. In the second phase, the HL‐CNN is introduced for feature extraction. The hyper‐layer technique is a masking technique that also inherent the features of the specified layers instead of only considering the features at the last layer. The best features are selected using a simple correlation‐based selection approach through HL‐CNN validation to minimize the irrelevant features in the system. In the last phase, the HH‐ELM is introduced to classify the tumor images to identify the different types of tumors. HH‐ELM is an enhanced version of ELM through optimal tuning of ELM parameters using a hyper‐heuristic optimization algorithm. Evaluations are performed over the BRATS 2020 database of MRI images and the proposed method of HL‐CNN and HH‐ELM achieved dice scores of 0.9020, 0.9393, and 0.9589 for ED, WT, and TC tumor classes with 95.89% accuracy, 98.46% precision, 96% recall, and 97.21% f ‐measure which are 2%–13% higher and processing time of 139.88 s which is 66%–78% lesser than the existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
17秒前
lily发布了新的文献求助10
22秒前
ceeray23应助科研通管家采纳,获得10
25秒前
lily完成签到,获得积分10
37秒前
fyr关注了科研通微信公众号
58秒前
1分钟前
1分钟前
1分钟前
fyr发布了新的文献求助10
1分钟前
1分钟前
1分钟前
obedVL完成签到,获得积分10
1分钟前
Alaska完成签到,获得积分10
1分钟前
Alaska发布了新的文献求助10
1分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
啦啦完成签到 ,获得积分10
3分钟前
3分钟前
daomaihu完成签到,获得积分10
3分钟前
迅速的念芹完成签到 ,获得积分10
3分钟前
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
俭朴蜜蜂完成签到 ,获得积分10
4分钟前
ceeray23发布了新的文献求助20
5分钟前
Orange应助ceeray23采纳,获得20
5分钟前
5分钟前
狗头发布了新的文献求助10
5分钟前
会飞的蜗牛完成签到,获得积分10
5分钟前
WerWu完成签到,获得积分0
6分钟前
zzy完成签到 ,获得积分10
6分钟前
Jasper应助科研通管家采纳,获得10
6分钟前
鬼笔环肽完成签到,获得积分10
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407926
求助须知:如何正确求助?哪些是违规求助? 4525379
关于积分的说明 14101723
捐赠科研通 4439250
什么是DOI,文献DOI怎么找? 2436676
邀请新用户注册赠送积分活动 1428660
关于科研通互助平台的介绍 1406740