Robustified extreme learning machine regression with applications in outlier-blended wind-speed forecasting

离群值 风速 计算机科学 极限学习机 回归 人工智能 机器学习 回归分析 异常检测 稳健回归 统计 气象学 数学 人工神经网络 物理
作者
Yang Yang,Hu Zhou,Jinran Wu,Zhe Ding,You‐Gan Wang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:122: 108814-108814 被引量:29
标识
DOI:10.1016/j.asoc.2022.108814
摘要

Wind energy is a core sustainable source of electric power, and accurate wind-speed forecasting is pivotal to enhancing the power stability, efficiency, and utilization. The existing forecasting methods are still limited by the influence of outliers and the modelling difficulties caused by complex features in wind speed series. This paper proposes a new wind speed forecasting system based on a designed adaptive robust extreme learning machine (ARELM) model and signal decomposition algorithms. Firstly, the ARELM is designed to sufficiently lessen the violation of normality assumptions and contamination by outliers. ARELM takes an adaptive scaled Huber’s loss as its objective function, which can limit the influence of outliers and adaptively determine an appropriate mixture distribution of normal distribution and Laplace distribution at the same time. Secondly, the empirical mode decomposition (EMD) method and its improved methods (EEMD, CEEMD and CEEMDAN) are introduced to our wind-speed forecasting system, where the low-frequent sub-series are modelled by basic ELM and the high-frequent ones are modelled by ARELM. This can decompose the modelling complex wind speed series into modelling several simple sub-series and reduce the difficulty of modelling. Experimental results show that our combined forecasting system, ELM-ARELM, obtains up to 78% improvement in forecasting performance comparing with the methods using general Huber’s loss and other comparison methods, which show the superiority of the adaptive scaled Huber’s loss. The error indexes (MAE and RMSE) by the proposed system, which are (0.25, 0.34), (0.32, 0.45) and (0.38, 0.53) for 5 min head, 15 min ahead and 25 min ahead experiments respectively, demonstrate the effectiveness of decomposition methods on improving accuracy of wind speed prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_n2Qv2L完成签到,获得积分10
1秒前
斯文败类应助顿手把其采纳,获得20
1秒前
慕青应助sparks采纳,获得10
2秒前
NING0611发布了新的文献求助10
4秒前
5秒前
Jasper应助玩命的书兰采纳,获得10
5秒前
6秒前
6秒前
7秒前
情怀应助小小米采纳,获得10
8秒前
哇咔咔完成签到 ,获得积分10
8秒前
情怀应助困困困采纳,获得30
8秒前
熊猫弟弟发布了新的文献求助10
9秒前
10秒前
10秒前
12秒前
Deng发布了新的文献求助10
15秒前
莫名完成签到,获得积分10
16秒前
18秒前
超人研究生完成签到,获得积分10
20秒前
20秒前
科目三应助南国之霄采纳,获得10
21秒前
21秒前
21秒前
完美世界应助来福萨克斯采纳,获得10
23秒前
23秒前
核桃应助2499297293采纳,获得10
24秒前
852应助一投就中采纳,获得10
25秒前
26秒前
26秒前
醉翁发布了新的文献求助10
26秒前
30秒前
31秒前
名字是乱码完成签到,获得积分20
31秒前
31秒前
困困困发布了新的文献求助30
31秒前
sophiemore完成签到,获得积分10
32秒前
深水中的阳光完成签到,获得积分10
35秒前
个性凡儿完成签到,获得积分10
35秒前
Tourist完成签到 ,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538689
求助须知:如何正确求助?哪些是违规求助? 3973052
关于积分的说明 12307737
捐赠科研通 3639863
什么是DOI,文献DOI怎么找? 2004161
邀请新用户注册赠送积分活动 1039575
科研通“疑难数据库(出版商)”最低求助积分说明 928856