数学
基质(化学分析)
共轭梯度法
应用数学
牛顿法
趋同(经济学)
拟牛顿法
奇异值
数学优化
域代数上的
纯数学
特征向量
非线性系统
材料科学
物理
量子力学
复合材料
经济
经济增长
作者
Weiwei Xu,Michael K. Ng,Zheng‐Jian Bai
摘要
In this paper, we first give new model formulations for computing arbitrary generalized singular value of a Grassmann matrix pair or a real matrix pair. In these new formulations, we need to solve matrix optimization problems with unitary constraints or orthogonal constraints. We propose a geometric inexact Newton--conjugate gradient (Newton-CG) method for solving the resulting matrix optimization problems. Under some mild assumptions, we establish the global and quadratic convergence of the proposed method for the complex case. Some numerical examples are given to illustrate the effectiveness and high accuracy of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI