Unified artificial neural network-group contribution method for predictions of normal boiling point and critical temperature of refrigerants and related compounds

沸点 制冷剂 人工神经网络 热力学 群贡献法 群(周期表) 点(几何) 沸腾 计算机科学 人工智能 化学 数学 物理 有机化学 热交换器 相(物质) 几何学 相平衡
作者
S. Devotta,Asha B. Chelani
出处
期刊:International Journal of Refrigeration-revue Internationale Du Froid [Elsevier BV]
卷期号:140: 112-124 被引量:6
标识
DOI:10.1016/j.ijrefrig.2022.04.020
摘要

• Novel methods for normal boiling point and critical temperature are proposed. • Data for emerging refrigerants and related compounds have been used. • Artificial neural network (ANN) and group contribution method (GCM) are combined. • The models are able to accurately predict sing structure of compounds. • These unified and simple models are novel. In this study, both normal boiling point and critical temperature of refrigerants and related compounds are predicted only from their molecular structures using a simple and unified Artificial Neural Network - Group Contribution Method. Identical 32 (including molecular mass) groups and methodologies have been used with 251 experimental data for T B and 132 experimental data for T C . In spite of its simplicity, the agreements between experimental and ANN predicted data for T B and T C are very good, better than most of the existing models. The percentage errors for training and test data sets are 2.4% and 3.7% and 2.8% and 5.7% for T B and T C respectively. The overall percentage errors for T B and T C are 2.8% and 3.7% respectively. A comparison of the proposed models with other models shows that for the class of compounds considered i.e., refrigerants and related compounds, this model predicts most accurately. These models can be conveniently used for any preliminary screening of compounds as alternative refrigerants or working fluids or for any other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
XiHuanChi完成签到,获得积分10
1秒前
复杂的新柔完成签到 ,获得积分10
1秒前
2秒前
天气好的话完成签到 ,获得积分10
2秒前
残幻完成签到,获得积分10
3秒前
4秒前
Rain发布了新的文献求助10
4秒前
LYL1120完成签到,获得积分10
4秒前
5秒前
烟花应助李兴起采纳,获得10
5秒前
闪闪绮露完成签到,获得积分10
5秒前
天明完成签到,获得积分10
5秒前
辅助成灾发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
乾坤完成签到,获得积分10
6秒前
研友_5ZlN6L发布了新的文献求助10
6秒前
7秒前
7秒前
不吃糖完成签到,获得积分10
7秒前
alron发布了新的文献求助10
7秒前
lili发布了新的文献求助10
7秒前
stephen完成签到,获得积分10
8秒前
11贾完成签到,获得积分10
8秒前
8秒前
TT完成签到,获得积分10
8秒前
尉迟剑心发布了新的文献求助10
8秒前
黄俊完成签到,获得积分10
9秒前
9秒前
rosestar完成签到 ,获得积分10
9秒前
谷粱可愁完成签到,获得积分10
9秒前
NexusExplorer应助zwl采纳,获得10
9秒前
一一完成签到 ,获得积分10
10秒前
新手上路完成签到,获得积分10
10秒前
莉莉发布了新的文献求助30
10秒前
10秒前
烟花应助welcomeS采纳,获得10
11秒前
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834587
求助须知:如何正确求助?哪些是违规求助? 3377081
关于积分的说明 10496404
捐赠科研通 3096557
什么是DOI,文献DOI怎么找? 1705041
邀请新用户注册赠送积分活动 820414
科研通“疑难数据库(出版商)”最低求助积分说明 772031