亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Advanced multi-input system identification for next generation aircraft loads monitoring using linear regression, neural networks and deep learning

预言 机身 结构健康监测 人工神经网络 工程类 水准点(测量) 深度学习 气动弹性 航程(航空) 系统标识 计算机科学 人工智能 可靠性工程 航空航天工程 结构工程 数据建模 空气动力学 软件工程 大地测量学 地理
作者
Michael J. Candon,Marco Esposito,Haytham M. Fayek,Oleg Levinski,Stephan Koschel,Nish Joseph,Robert Carrese,Pier Marzocca
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:171: 108809-108809 被引量:44
标识
DOI:10.1016/j.ymssp.2022.108809
摘要

Over the past decade, the ideologies surrounding Structural Health Monitoring (SHM) have shifted drastically within the aerospace engineering disciplines, predominantly onus to rapid advancements in machine intelligence. While traditional SHM practices are based on scheduled and pre-emptive maintenance, the NextGen SHM system, known commonly as Prognostics and Health Management (PHM), has a focus on pro-active condition-based maintenance, forecasting and prognostics — a milestone on the trajectory towards Digital Twin technology. In aircraft, particularly defense fighter air platforms, fatigue-critical high-amplitude cyclic behavior is unavoidable, where rapid fatigue life consumption due to an airframe buffet is one of the most problematic phenomena that engineers have encountered throughout the 4th and 5th generation fighter programs. This paper serves as a point-of-reference consolidating a range of machine learning models, under a single benchmark aircraft Multi-Input Single-Output (MISO) loads monitoring problem. Linear regression models, traditional (shallow) artificial neural networks, and deep learning strategies are all explored, where strain sensors are used as inputs to predict representative bending and torsional dynamic (buffet) and quasi-static (maneuver) load spectra on an aircraft wing during transonic buffeting maneuvers. For the benchmark system considered herein, the MISO coherence ranges from high to very weak depending on the load case, hereby providing a unique opportunity to rigorously explore the time-series modeling requirements and make valuable recommendations across a wide range of data-qualities that are likely to be encountered in traditional or modern aircraft data-acquisition systems or, for that matter, in any mechanical systems plagued by fatigue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
额哦关注了科研通微信公众号
6秒前
Chouvikin发布了新的文献求助10
8秒前
16秒前
额哦发布了新的文献求助30
20秒前
小二郎应助lawang采纳,获得10
28秒前
ceeray23应助科研通管家采纳,获得10
51秒前
Owen应助科研通管家采纳,获得10
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
52秒前
lawang发布了新的文献求助10
56秒前
震动的梦山完成签到,获得积分10
1分钟前
华仔应助lawang采纳,获得10
1分钟前
Alisha完成签到,获得积分10
1分钟前
1分钟前
ytc完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
田様应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
5分钟前
TEMPO发布了新的文献求助10
5分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
今后应助George采纳,获得10
6分钟前
cc完成签到,获得积分10
7分钟前
7分钟前
zwb完成签到 ,获得积分10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
ceeray23应助科研通管家采纳,获得10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650979
求助须知:如何正确求助?哪些是违规求助? 4782508
关于积分的说明 15052886
捐赠科研通 4809757
什么是DOI,文献DOI怎么找? 2572573
邀请新用户注册赠送积分活动 1528583
关于科研通互助平台的介绍 1487585