亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data

规范化(社会学) RNA序列 生物 计算生物学 深度测序 核糖核酸 参考基因组 DNA微阵列 DNA测序 基因 遗传学 基因组 转录组 基因表达 人类学 社会学
作者
Peipei Li,Yongjun Piao,Ho Sun Shon,Keun Ho Ryu
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:16 (1) 被引量:150
标识
DOI:10.1186/s12859-015-0778-7
摘要

Recently, rapid improvements in technology and decrease in sequencing costs have made RNA-Seq a widely used technique to quantify gene expression levels. Various normalization approaches have been proposed, owing to the importance of normalization in the analysis of RNA-Seq data. A comparison of recently proposed normalization methods is required to generate suitable guidelines for the selection of the most appropriate approach for future experiments. In this paper, we compared eight non-abundance (RC, UQ, Med, TMM, DESeq, Q, RPKM, and ERPKM) and two abundance estimation normalization methods (RSEM and Sailfish). The experiments were based on real Illumina high-throughput RNA-Seq of 35- and 76-nucleotide sequences produced in the MAQC project and simulation reads. Reads were mapped with human genome obtained from UCSC Genome Browser Database. For precise evaluation, we investigated Spearman correlation between the normalization results from RNA-Seq and MAQC qRT-PCR values for 996 genes. Based on this work, we showed that out of the eight non-abundance estimation normalization methods, RC, UQ, Med, TMM, DESeq, and Q gave similar normalization results for all data sets. For RNA-Seq of a 35-nucleotide sequence, RPKM showed the highest correlation results, but for RNA-Seq of a 76-nucleotide sequence, least correlation was observed than the other methods. ERPKM did not improve results than RPKM. Between two abundance estimation normalization methods, for RNA-Seq of a 35-nucleotide sequence, higher correlation was obtained with Sailfish than that with RSEM, which was better than without using abundance estimation methods. However, for RNA-Seq of a 76-nucleotide sequence, the results achieved by RSEM were similar to without applying abundance estimation methods, and were much better than with Sailfish. Furthermore, we found that adding a poly-A tail increased alignment numbers, but did not improve normalization results. Spearman correlation analysis revealed that RC, UQ, Med, TMM, DESeq, and Q did not noticeably improve gene expression normalization, regardless of read length. Other normalization methods were more efficient when alignment accuracy was low; Sailfish with RPKM gave the best normalization results. When alignment accuracy was high, RC was sufficient for gene expression calculation. And we suggest ignoring poly-A tail during differential gene expression analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助小橘子吃傻子采纳,获得10
4秒前
4秒前
yyds应助puppy采纳,获得10
6秒前
科目三应助puppy采纳,获得10
6秒前
Maple完成签到,获得积分10
9秒前
17秒前
李健的小迷弟应助1234采纳,获得10
18秒前
22秒前
标致缘郡发布了新的文献求助10
31秒前
35秒前
标致缘郡完成签到,获得积分20
38秒前
41秒前
量子星尘发布了新的文献求助10
52秒前
vicky发布了新的文献求助10
54秒前
研友_LaOyQZ完成签到,获得积分10
55秒前
Draymond完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
随机昵称完成签到,获得积分10
1分钟前
1分钟前
顾矜应助ZYQ采纳,获得10
1分钟前
随机昵称发布了新的文献求助10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
白木完成签到,获得积分10
1分钟前
1分钟前
sandwich完成签到 ,获得积分10
1分钟前
ZYQ发布了新的文献求助10
1分钟前
ZYQ完成签到,获得积分10
1分钟前
草木完成签到 ,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5116209
求助须知:如何正确求助?哪些是违规求助? 4322928
关于积分的说明 13469721
捐赠科研通 4155138
什么是DOI,文献DOI怎么找? 2277014
邀请新用户注册赠送积分活动 1278886
关于科研通互助平台的介绍 1216893