Atmospheric Pressure and Room Temperature Synthesis of Methanol through Plasma-Catalytic Hydrogenation of CO2

甲醇 催化作用 介质阻挡放电 产量(工程) 大气压力 化学 化学工程 非热等离子体 材料科学 无机化学 等离子体 有机化学 电极 物理化学 复合材料 量子力学 海洋学 物理 地质学 工程类
作者
Li Wang,Yanhui Yi,Hongchen Guo,Xin Tu
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:8 (1): 90-100 被引量:250
标识
DOI:10.1021/acscatal.7b02733
摘要

CO2 hydrogenation to methanol is a promising process for CO2 conversion and utilization. Despite a well-developed route for CO hydrogenation to methanol, the use of CO2 as a feedstock for methanol synthesis remains underexplored, and one of its major challenges is high reaction pressure (usually 30–300 atm). In this work, atmospheric pressure and room temperature (∼30 °C) synthesis of methanol from CO2 and H2 has been successfully achieved using a dielectric barrier discharge (DBD) with and without a catalyst. The methanol production was strongly dependent on the plasma reactor setup; the DBD reactor with a special water-electrode design showed the highest reaction performance in terms of the conversion of CO2 and methanol yield. The combination of the plasma with Cu/γ-Al2O3 or Pt/γ-Al2O3 catalyst significantly enhanced the CO2 conversion and methanol yield compared to the plasma hydrogenation of CO2 without a catalyst. The maximum methanol yield of 11.3% and methanol selectivity of 53.7% were achieved over the Cu/γ-Al2O3 catalyst with a CO2 conversion of 21.2% in the plasma process, while no reaction occurred at ambient conditions without using plasma. The possible reaction mechanisms in the plasma CO2 hydrogenation to CH3OH with and without a catalyst were proposed by combined means of electrical and optical diagnostics, product analysis, catalyst characterization, and plasma kinetic modeling. These results have successfully demonstrated that this unique plasma process offers a promising solution for lowering the kinetic barrier of catalytic CO2 hydrogenation to methanol instead of using traditional approaches (e.g., high reaction temperature and high-pressure process), and has great potential to deliver a step-change in future CO2 conversion and utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
young完成签到,获得积分10
1秒前
1秒前
334niubi666完成签到 ,获得积分10
2秒前
LY发布了新的文献求助10
2秒前
2秒前
3秒前
汉堡包应助学术Bond采纳,获得10
3秒前
7473发布了新的文献求助10
3秒前
4秒前
4秒前
Jason发布了新的文献求助10
5秒前
乐乐应助麦子采纳,获得10
5秒前
清爽妙竹应助项初蝶采纳,获得10
5秒前
爆米花应助feishi采纳,获得10
5秒前
6秒前
高跟鞋陈煋完成签到,获得积分10
7秒前
7秒前
BrandNew。发布了新的文献求助10
8秒前
seven发布了新的文献求助10
8秒前
SYLH发布了新的文献求助60
9秒前
9秒前
Cc完成签到,获得积分20
9秒前
9秒前
研友_VZG7GZ应助凡凡采纳,获得10
10秒前
自由安柏发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
顺利毕业完成签到,获得积分10
12秒前
13秒前
研友_VZG7GZ应助发光采纳,获得10
13秒前
14秒前
朱佳慧完成签到,获得积分10
14秒前
Guan发布了新的文献求助30
14秒前
左眼天堂发布了新的文献求助10
14秒前
15秒前
魔幻的语堂完成签到,获得积分10
15秒前
撒旦撒完成签到,获得积分10
15秒前
Karry完成签到 ,获得积分10
15秒前
黄子舟发布了新的文献求助10
17秒前
BrandNew。完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951455
求助须知:如何正确求助?哪些是违规求助? 3496905
关于积分的说明 11085004
捐赠科研通 3227298
什么是DOI,文献DOI怎么找? 1784400
邀请新用户注册赠送积分活动 868422
科研通“疑难数据库(出版商)”最低求助积分说明 801122