Leakage in data mining

计算机科学 泄漏(经济) 数据科学 数据挖掘 风险分析(工程) 业务 经济 宏观经济学
作者
Shachar Kaufman,Saharon Rosset,Claudia Perlich,Ori Stitelman
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:6 (4): 1-21 被引量:377
标识
DOI:10.1145/2382577.2382579
摘要

Deemed “one of the top ten data mining mistakes”, leakage is the introduction of information about the data mining target that should not be legitimately available to mine from. In addition to our own industry experience with real-life projects, controversies around several major public data mining competitions held recently such as the INFORMS 2010 Data Mining Challenge and the IJCNN 2011 Social Network Challenge are evidence that this issue is as relevant today as it has ever been. While acknowledging the importance and prevalence of leakage in both synthetic competitions and real-life data mining projects, existing literature has largely left this idea unexplored. What little has been said turns out not to be broad enough to cover more complex cases of leakage, such as those where the classical independently and identically distributed (i.i.d.) assumption is violated, that have been recently documented. In our new approach, these cases and others are explained by explicitly defining modeling goals and analyzing the broader framework of the data mining problem. The resulting definition enables us to derive general methodology for dealing with the issue. We show that it is possible to avoid leakage with a simple specific approach to data management followed by what we call a learn-predict separation, and present several ways of detecting leakage when the modeler has no control over how the data have been collected. We also offer an alternative point of view on leakage that is based on causal graph modeling concepts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ARIA完成签到 ,获得积分10
4秒前
大模型应助陈伟杰采纳,获得10
5秒前
czcz完成签到,获得积分10
6秒前
6秒前
脑洞疼应助c445507405采纳,获得10
6秒前
芊芊完成签到,获得积分10
6秒前
科研通AI5应助机灵冰珍采纳,获得30
6秒前
博慧发布了新的文献求助10
6秒前
怕孤单的安蕾完成签到 ,获得积分10
7秒前
九零后无心完成签到,获得积分10
7秒前
Glamic完成签到,获得积分10
7秒前
ccccchen完成签到,获得积分10
8秒前
lgwang发布了新的文献求助10
9秒前
11秒前
仁爱的谷南完成签到,获得积分10
12秒前
12秒前
马里奥完成签到,获得积分10
13秒前
笑点低诗桃完成签到,获得积分20
13秒前
13秒前
14秒前
feng发布了新的文献求助10
16秒前
MLJ完成签到 ,获得积分10
16秒前
17秒前
soss完成签到,获得积分10
17秒前
LTJ完成签到,获得积分10
17秒前
小蜗牛发布了新的文献求助10
17秒前
wujingshuai完成签到,获得积分10
18秒前
英姑应助lgwang采纳,获得10
19秒前
糯米糕完成签到 ,获得积分10
20秒前
专注三问发布了新的文献求助30
20秒前
哎哟可爱完成签到,获得积分10
22秒前
顾矜应助小蜗牛采纳,获得10
23秒前
854fycchjh完成签到,获得积分10
23秒前
超帅连虎应助郭干成采纳,获得30
23秒前
噗噗完成签到 ,获得积分10
24秒前
铃溪完成签到,获得积分10
25秒前
25秒前
懵懂的凝丹完成签到 ,获得积分10
26秒前
Felix完成签到,获得积分10
27秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4081381
求助须知:如何正确求助?哪些是违规求助? 3620857
关于积分的说明 11487301
捐赠科研通 3336219
什么是DOI,文献DOI怎么找? 1834056
邀请新用户注册赠送积分活动 902877
科研通“疑难数据库(出版商)”最低求助积分说明 821335