亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancement of prostate cancer diagnosis by machine learning techniques: an algorithm development and validation study

医学 前列腺癌 直肠检查 泌尿科 逻辑回归 队列 接收机工作特性 前列腺 算法 内科学 癌症 数学
作者
Peter Ka‐Fung Chiu,Xiao Shen,Guanjin Wang,Cho-Lik Ho,Chi‐Ho Leung,Chi‐Fai Ng,Kup‐Sze Choi,Jeremy Yuen‐Chun Teoh
出处
期刊:Prostate Cancer and Prostatic Diseases [Springer Nature]
卷期号:25 (4): 672-676 被引量:52
标识
DOI:10.1038/s41391-021-00429-x
摘要

To investigate the value of machine learning(ML) in enhancing prostate cancer(PCa) diagnosis. Consecutive systematic prostate biopsies performed from Jan 2003–June 2017 were used as the training cohort, and prospective biopsies performed from July 2017-November 2019 were used as validation cohort. Men were included if PSA was 0.4–50 ng/mL, and information of digital rectal examination (DRE), Transrectal ultrasound(TRUS) prostate volume, TRUS abnormality were known. Clinically significant PCa(csPCa) was defined as Gleason 3 + 4 or above cancers. Area-under-curve (AUC) of receiver-operating characteristics (ROC) was compared between PSA, PSA density, European Randomized Study of Screening for Prostate Cancer (ERSPC) risk calculator (ERSPC-RC), and various ML techniques using PSA, DRE and TRUS information. ML techniques used included XGBoost, LightGBM, Catboost, Support vector machine (SVM), Logistic regression (LR), and Random Forest (RF), where cost sensitive learning was applied. Training and validation cohorts included 3881 and 778 consecutive men, respectively. RF model performed better than other ML techniques and PSA, PSA density and ERSPC-RC for prediction of PCa or csPCa in the validation cohort. In csPCa prediction, AUC of PSA, PSA density, ERSPC-RC and RF was 0.71, 0.80, 0.83 and 0.88 respectively. At 90–95% sensitivity for csPCa, RF model achieved a negative predictive value (NPV) of 97.5–98.0% and avoided 38.3–52.2% unnecessary biopsies. Decision curve analyses (DCA) showed RF model provided net clinical benefit over PSA, PSA density and ERSPC-RC. By using the same clinical parameters, ML techniques performed better than ERSPC-RC or PSA density in csPCa predictions, and could avoid up to 50% unnecessary biopsies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
魔幻的芳完成签到,获得积分10
刚刚
4秒前
火星上的宝马完成签到,获得积分10
4秒前
4秒前
4秒前
俏皮跳跳糖完成签到,获得积分10
5秒前
悲凉的忆南完成签到,获得积分10
7秒前
桃子e发布了新的文献求助10
8秒前
xiaxiao完成签到,获得积分0
9秒前
huan发布了新的文献求助10
10秒前
陈旧完成签到,获得积分10
10秒前
欣欣子完成签到,获得积分10
14秒前
15秒前
sunstar完成签到,获得积分10
17秒前
72219发布了新的文献求助10
19秒前
yxl完成签到,获得积分10
21秒前
Jasper应助huan采纳,获得10
23秒前
可耐的盈完成签到,获得积分10
24秒前
烟消云散完成签到,获得积分10
24秒前
cc完成签到,获得积分20
24秒前
25秒前
绿毛水怪完成签到,获得积分10
27秒前
FashionBoy应助抹茶采纳,获得10
29秒前
钱百川发布了新的文献求助10
30秒前
lsc完成签到,获得积分10
31秒前
小fei完成签到,获得积分10
34秒前
麻辣薯条完成签到,获得积分10
37秒前
时尚身影完成签到,获得积分10
41秒前
科研通AI6应助科研通管家采纳,获得10
42秒前
钱百川完成签到,获得积分20
43秒前
leoduo完成签到,获得积分0
44秒前
流苏2完成签到,获得积分10
48秒前
斯文败类应助科研通管家采纳,获得10
50秒前
英姑应助科研通管家采纳,获得10
50秒前
52秒前
科目三应助零知识采纳,获得10
58秒前
科研通AI2S应助123采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780200
求助须知:如何正确求助?哪些是违规求助? 5653166
关于积分的说明 15452863
捐赠科研通 4910949
什么是DOI,文献DOI怎么找? 2643155
邀请新用户注册赠送积分活动 1590810
关于科研通互助平台的介绍 1545294