已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Impact of Artificial Intelligence on Traditional Chinese Medicine

中医药 人工智能 传统医学 可靠性(半导体) 一致性(知识库) 医学 医学物理学 替代医学 计算机科学 病理 量子力学 物理 功率(物理)
作者
Yulin Wang,Xiuming Shi,Li Li,Thomas Efferth,Dong Shang
出处
期刊:The American Journal of Chinese Medicine [World Scientific]
卷期号:49 (06): 1297-1314 被引量:69
标识
DOI:10.1142/s0192415x21500622
摘要

Traditional Chinese Medicine (TCM) is a well-established medical system with a long history. Currently, artificial intelligence (AI) is rapidly expanding in many fields including TCM. AI will significantly improve the reliability and accuracy of diagnostics, thus increasing the use of effective therapeutic methods for patients. This systematic review provides an updated overview on the major breakthroughs in the field of AI-assisted TCM four diagnostic methods, syndrome differentiation, and treatment. AI-assisted TCM diagnosis is mainly based on digital data collected by modern electronic instruments, which makes TCM diagnosis more quantitative, objective, and standardized. As a result, the diagnosis decisions made by different TCM doctors exhibit more consistency, accuracy, and reliability. Meanwhile, the therapeutic efficacy of TCM can be evaluated objectively. Therefore, AI is promoting TCM from experience to evidence-based medicine, a genuine scientific revolution. Furthermore, huge and non-uniform knowledge on formula-syndrome relationships and the combination rules of herbal TCM formulae could be better standardized with the help of AI analysis, which is necessary for the clinical efficacy evaluation and further optimization on the standardized TCM formulae. AI bridges the gap between TCM and modern science and technology. AI may bring clinical TCM diagnostics closer to western medicine. With the help of AI, more scientific evidence about TCM will be discovered. It can be expected that more unified guidelines for specific TCM syndromes will be issued with the development of AI-assisted TCM therapies in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
靖哥哥发布了新的文献求助10
4秒前
刘刘发布了新的文献求助10
5秒前
李爱国应助wonder123采纳,获得10
7秒前
星陨发布了新的文献求助10
8秒前
linkman发布了新的文献求助10
8秒前
天意如此应助之道采纳,获得10
9秒前
云木完成签到 ,获得积分10
11秒前
七慕凉应助1789采纳,获得30
13秒前
打打应助linkman采纳,获得10
15秒前
香蕉觅云应助橙汁采纳,获得10
15秒前
15秒前
暮商完成签到 ,获得积分10
15秒前
丘比特应助中海采纳,获得10
18秒前
悄悄是心上的肖肖完成签到 ,获得积分10
18秒前
公羽完成签到,获得积分10
20秒前
残月绝夕发布了新的文献求助10
20秒前
背后归尘完成签到,获得积分10
21秒前
zz完成签到,获得积分10
22秒前
soar完成签到 ,获得积分10
22秒前
25秒前
25秒前
Akim应助wonder123采纳,获得10
29秒前
29秒前
橙汁发布了新的文献求助10
30秒前
Sailzyf完成签到,获得积分10
32秒前
bkagyin应助小丫采纳,获得10
33秒前
novice发布了新的文献求助20
35秒前
李木子hust完成签到,获得积分10
37秒前
37秒前
魔王巡视完成签到 ,获得积分10
38秒前
思源应助Dylan采纳,获得10
39秒前
阿黄与小橘完成签到,获得积分20
39秒前
星辰大海应助吞金采纳,获得10
39秒前
乐观的乐松完成签到,获得积分10
40秒前
NexusExplorer应助小贝采纳,获得30
40秒前
高贵安青完成签到 ,获得积分10
41秒前
小绵羊完成签到 ,获得积分10
41秒前
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3940442
求助须知:如何正确求助?哪些是违规求助? 3486215
关于积分的说明 11036956
捐赠科研通 3216025
什么是DOI,文献DOI怎么找? 1777637
邀请新用户注册赠送积分活动 863747
科研通“疑难数据库(出版商)”最低求助积分说明 798972