Hybrid IPSO-IAGA-BPNN algorithm-based rapid multi-objective optimization of a fully parameterized spaceborne primary mirror

参数化复杂度 粒子群优化 克里金 遗传算法 计算机科学 算法 人工神经网络 人工智能 机器学习
作者
Tao Qin,Junli Guo,Zijian Jing,Peixian Han,Bo Qi
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:60 (11): 3031-3031 被引量:5
标识
DOI:10.1364/ao.419227
摘要

The surface figure precision, weight, and dynamic performance of spaceborne primary mirrors depend on mirror structure parameters, which are usually optimized to improve the overall performance. To realize rapid multi-objective design optimization of a primary mirror with multiple apertures, a fully parameterized primary mirror structure is established. A surrogate model based on a hybrid of improved particle swarm optimization (IPSO), adaptive genetic algorithm (IAGA), and optimized back propagation neural network (IPSO-IAGA-BPNN) is developed to replace optomechanical simulation with its high computational cost. In this model, a self-adaptive inertia weight and a modified genetic operator are introduced into the particle swarm optimization (PSO) and adaptive genetic algorithm (AGA), respectively. The connection parameters of BPNN are optimized by the IPSO-IAGA algorithm for global searching capability. Further, the proposed IPSO-IAGA-BPNN, based on a rapid multi-objective optimization framework for a fully parameterized primary mirror structure, is established. Moreover, in addition to the proposed IPSO-IAGA-BPNN model, the Kriging, RSM, BPNN, GA-BPNN, PSO-BPNN, and PSO-GA-BPNN models are also analyzed as contrast models. The comparison results indicate that the predicted value obtained by IPSO-IAGA-BPNN is superior to the six other surrogate models since its mean absolute percentage error is less than 3% and its R 2 is more than 0.99. Finally, we present a Pareto-optimal primary mirror design and implement it through three optimization methods. The verification results show that the proposed method predicts mirror structural performance more accurately than existing surrogate-based methods, and promotes significantly superior computational efficiency compared to the conventional integration-based method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
ming完成签到,获得积分10
1秒前
1秒前
啊唔发布了新的文献求助10
1秒前
mi完成签到,获得积分10
2秒前
我是老大应助含糊的文涛采纳,获得10
2秒前
2秒前
3秒前
4秒前
莎莎完成签到,获得积分10
4秒前
hanwenzzz发布了新的文献求助10
5秒前
CodeCraft应助姜姜采纳,获得10
5秒前
Z123完成签到,获得积分10
5秒前
5秒前
卡坦精发布了新的文献求助10
5秒前
幼萱发布了新的文献求助10
6秒前
7秒前
滚动星发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
小王完成签到,获得积分10
9秒前
胡说驳回了乐乐应助
9秒前
明理丹烟发布了新的文献求助10
10秒前
9℃发布了新的文献求助10
10秒前
11秒前
博修发布了新的文献求助10
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得30
12秒前
shea应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
May应助科研通管家采纳,获得20
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
Lucas应助ZKK采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3933802
求助须知:如何正确求助?哪些是违规求助? 3479035
关于积分的说明 11003684
捐赠科研通 3208855
什么是DOI,文献DOI怎么找? 1773399
邀请新用户注册赠送积分活动 860392
科研通“疑难数据库(出版商)”最低求助积分说明 797656