自相关
水听器
计算机科学
路径(计算)
卷积神经网络
特征(语言学)
人工智能
深度学习
模式识别(心理学)
地质学
声学
算法
数学
物理
统计
哲学
程序设计语言
语言学
作者
Yining Liu,Haiqiang Niu,Zhenglin Li,Mengyuan Wang
出处
期刊:JASA express letters
[Acoustical Society of America]
日期:2021-03-01
卷期号:1 (3)
被引量:20
摘要
In the direct arrival zone of the deep ocean, the multi-path time delays have been used for acoustic source localization. One of the challenges in conventional localization methods is to artificially determine which paths the extracted delays belong to. A convolutional neural network, taking the autocorrelation functions as the input feature directly, is proposed for source localization to avoid the path determination procedure. Since some multi-path arrivals may not be visible due to absorption in the bottom of the ocean, a data augmentation method based on a ray propagation model is proposed. Tests on simulated and real data validate the method.
科研通智能强力驱动
Strongly Powered by AbleSci AI