Artificial neural networks applied to landslide susceptibility: The effect of sampling areas on model capacity for generalization and extrapolation

外推法 山崩 人工神经网络 采样(信号处理) 地形 一般化 仰角(弹道) 反向传播 统计 地图学 数字高程模型 地理 计算机科学 遥感 人工智能 数学 地质学 地貌学 几何学 数学分析 滤波器(信号处理) 计算机视觉
作者
Samuel Gameiro,Eduardo Samuel Riffel,Guilherme Garcia de Oliveira,Laurindo Antônio Guasselli
出处
期刊:Applied Geography [Elsevier BV]
卷期号:137: 102598-102598 被引量:30
标识
DOI:10.1016/j.apgeog.2021.102598
摘要

Artificial neural networks (ANNs) have been used to identify areas susceptible to landslides and constitute one of the most widely used methods for this purpose. Several factors can interfere in the performance of the models and their resulting maps (especially sampling). This research evaluated the influence of sampling areas on landslide susceptibility modelling and the capacity for generalization and spatial extrapolation of data. Based on an inventory of landslide scars, distributed in five areas of southern Brazil, non-occurrence samples were defined by means of different buffers (2–40 km) in relation to the landslides in order to test the effect of the spatial distribution of the non-occurrence samples on the modeling results. A total of 16 morphometric attributes of the terrain (extracted from a digital elevation model) were used as input variables of the model. Multilayered network training was carried out using a backpropagation algorithm and accuracy was calculated by means of the Area Under the Receiver Operating Characteristic Curve (AUROC). Model accuracy was between 0.739 and 0.931. This variation was explained mainly by the buffer used. The susceptibility map resulting from the model of greater accuracy was obtained with a 40-km buffer in order to collect non-occurrence samples. The great distance between the occurrence and non-occurrence samples facilitates the modelling, since it increases the morphometric differences between the sampling groups. When we used samples from only one of the sample areas, the spatial extrapolation of the susceptibility map to the other areas showed high performance. We conclude that the ANN model for landslides susceptibility mapping can be extrapolated spatially, considering the limits of the geomorphological unit or numerical domain of the data. • We evaluated the influence of sampling areas on landslide susceptibility modelling. • A multilayer artificial neural network was trained using a backpropagation algorithm. • The accuracy of the landslide susceptibility mapping was between 0.739 and 0.931. • The accuracy of LSM increases proportionally to the distance between the occurrence and non-occurrence samples. • The spatial extrapolation of the models was successful, even using landslide polygons from only one sample area. • The ANN model for landslides susceptibility mapping can be extrapolated spatially.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wg发布了新的文献求助10
1秒前
記yian发布了新的文献求助10
2秒前
飞快的雅青完成签到 ,获得积分10
2秒前
qi完成签到,获得积分10
2秒前
jovrtic完成签到,获得积分10
2秒前
3秒前
小黎完成签到,获得积分10
4秒前
智齿怪物一号完成签到,获得积分10
5秒前
充电宝应助阆州采纳,获得10
5秒前
Lam发布了新的文献求助10
5秒前
niguang发布了新的文献求助10
5秒前
超稳健不上头完成签到,获得积分10
5秒前
6秒前
xxl发布了新的文献求助10
6秒前
6秒前
大地完成签到,获得积分10
6秒前
Smile2044完成签到,获得积分10
6秒前
wing完成签到 ,获得积分10
7秒前
Almo完成签到,获得积分10
7秒前
王粒发布了新的文献求助10
7秒前
寻雾启事完成签到,获得积分10
7秒前
w2503发布了新的文献求助10
8秒前
8秒前
JINCHANG完成签到,获得积分10
8秒前
小蘑菇应助文哲采纳,获得10
9秒前
10秒前
記yian完成签到,获得积分20
11秒前
11秒前
rh1006完成签到,获得积分10
12秒前
Lam完成签到,获得积分10
12秒前
昨叶何草完成签到,获得积分10
12秒前
14秒前
15秒前
asdfqwer应助明杰采纳,获得10
16秒前
梦XING完成签到 ,获得积分10
16秒前
caty完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
Owen应助Chuncheng采纳,获得10
18秒前
小石同学发布了新的文献求助10
18秒前
18秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Considering a Biologic: What's a Clinician to Do? Screening and Laboratory Monitoring for Biologic Therapies in the Treatment of Psoriasis 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3875777
求助须知:如何正确求助?哪些是违规求助? 3418444
关于积分的说明 10708791
捐赠科研通 3142984
什么是DOI,文献DOI怎么找? 1734131
邀请新用户注册赠送积分活动 836549
科研通“疑难数据库(出版商)”最低求助积分说明 782650