Identification and Application of Machine Learning Algorithms for Transformer Dissolved Gas Analysis

溶解气体分析 变压器 机器学习 工程类 支持向量机 计算机科学 故障检测与隔离 人工智能 可靠性工程 算法 数据挖掘 电压 电气工程 执行机构 变压器油
作者
U. Mohan Rao,I. Fofana,Kandala N. V. P. S. Rajesh,P. Picher
出处
期刊:IEEE Transactions on Dielectrics and Electrical Insulation [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 1828-1835 被引量:37
标识
DOI:10.1109/tdei.2021.009770
摘要

Power transformers represent one of the most abundant and expensive components in the electric power industry. Dissolved gas analysis (DGA) of transformer is the most widely accepted diagnostic tool across the globe to understand insulation incipient failures. Nevertheless, DGA fault gas interpretation is a remarkable challenge for transformer owners and utility engineers. Several computational techniques have been adopted for DGA fault classification along with offline methods. However, limited data availability, high ambiguity in DGA interpretation, suitability, and model accuracy are critical challenges in the DGA fault classification using computational techniques. In this work, highly diverse and large DGA data samples of in-service transformer fleets from five different utilities have been used to develop an efficient fault classification methodology. A total of 4580 DGA samples and IEC TC 10 database are used for training and testing, respectively, for various machine learning algorithms. Discussions on performance indicators and evaluation of several algorithms to verify the most suitable class algorithms are also the focus of this work. Furthermore, a best-performing model is identified based on various performance indicators. The hyperparameters of the best model are further tuned to achieve a most precise fault classification. It is inferred that non-parametric methods and non-linear SVM are best suitable for transformer DGA fault classification. Importantly, the rankings in the present study suggest that transformer DGA fault prediction is better with ensemble learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
无餍应助和科研不太熟采纳,获得10
2秒前
3秒前
DDDD发布了新的文献求助10
4秒前
flow完成签到,获得积分10
4秒前
可爱的函函应助happiness采纳,获得10
5秒前
HP完成签到,获得积分10
5秒前
上官子默完成签到,获得积分10
5秒前
Amani发布了新的文献求助10
5秒前
无限妙梦发布了新的文献求助10
6秒前
顺利的傲之完成签到 ,获得积分20
6秒前
BLAZe完成签到,获得积分10
7秒前
阿丕啊呸完成签到,获得积分10
9秒前
被划分发布了新的文献求助10
9秒前
luochen完成签到,获得积分10
9秒前
chrysan完成签到,获得积分10
10秒前
sherry完成签到,获得积分10
10秒前
11秒前
wu发布了新的文献求助10
11秒前
ChemPhys完成签到 ,获得积分10
12秒前
12秒前
12秒前
张张张完成签到,获得积分10
13秒前
獭獭完成签到,获得积分10
13秒前
zfc完成签到,获得积分20
14秒前
14秒前
14秒前
小竹子发布了新的文献求助10
15秒前
烤全鱼呢完成签到,获得积分10
15秒前
星辰大海应助清脆安南采纳,获得10
16秒前
zfc发布了新的文献求助10
16秒前
17秒前
17秒前
xyy001完成签到,获得积分10
17秒前
18秒前
18秒前
happiness发布了新的文献求助10
18秒前
amour发布了新的文献求助10
19秒前
19秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805671
求助须知:如何正确求助?哪些是违规求助? 3350543
关于积分的说明 10349654
捐赠科研通 3066476
什么是DOI,文献DOI怎么找? 1683800
邀请新用户注册赠送积分活动 809142
科研通“疑难数据库(出版商)”最低求助积分说明 765350