已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Investigation of optimal vegetation indices for retrieval of leaf chlorophyll and leaf area index using enhanced learning algorithms

叶面积指数 植被指数 数学 植被(病理学) 索引(排版) 算法 遥感 叶绿素 环境科学 农学 计算机科学 归一化差异植被指数 植物 生物 地理 万维网 病理 医学
作者
Bhagyashree Verma,Rajendra Prasad,Prashant K. Srivastava,Suraj A. Yadav,Prachi Singh,Rajiv Kumar Singh
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:192: 106581-106581 被引量:48
标识
DOI:10.1016/j.compag.2021.106581
摘要

With the availability of high-resolution data due to sensor technology advancement, it is now easier for researchers and scientists to detect or view the spectral variability of different crops. For this study, Leaf chlorophyll content (LCC) and Leaf area index (LAI) of the crops Maize (Zea mays), Mustard (Brassica), and pink Lentils (Lens esculenta) under different irrigation and fertilizer treatments have been analyzed. In total, rigorous assessment of 25-hyperspectral vegetation indices (VIs) at both leaf and canopy level for chlorophyll content, whereas 7- hyperspectral VIs for LAI at canopy level were computed to investigate the robustness of these VIs for LCC and LAI assessment. Variable importance in projection (VIP) using Partial Least Square regression (PLSR) and coefficient of determination (R2) were computed for all the VIs to extract the most sensitive information for the retrieval of LCC and LAI. As a result, the VIs using the red-edge reflectance bands at 705 and 750 nm were found highly responsive to LAI compared to other wavebands. In contrast, the VIs indices made of green (550 nm), red (670, 690, and 700 nm), and red-edge (705, 750 nm) bands were found highly sensitive to the temporal LCC values of lentils and maize crop beds. In addition, the temporal LCC values of Mustard crop beds’ were found sensitive to the VIs made of green (550 nm), red (670, 690, and 700 nm), and NIR (800 nm) wavebands. The three VIs having high VIP and R2 values were selected as optimum sets of input to build support vector regression models using radial (SVR-Rad), linear (SVR-Li), polynomial (SVR-Poly), Random Forrest Regression (RFR), Partial least square regression (PLSR), and Hybrid neural fuzzy inference system (HyFIS). The analysis showed that the SVR-Rad model outperformed the SVR-Li, SVR-Poly, RFR, PLSR, and HyFIS models in terms of robustness for biophysical and biochemical parameters retrieval using hyperspectral data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助暴躁的哈密瓜采纳,获得10
1秒前
1秒前
闪闪怀柔完成签到,获得积分10
5秒前
5秒前
lyr发布了新的文献求助10
5秒前
科研通AI5应助顺利的机器猫采纳,获得100
6秒前
6秒前
豆豆发布了新的文献求助10
7秒前
7秒前
11秒前
blue2021发布了新的文献求助10
12秒前
简单诗翠完成签到,获得积分10
12秒前
Xin发布了新的文献求助10
12秒前
13秒前
汉堡包应助活力小笼包采纳,获得10
14秒前
15秒前
16秒前
纯情的天奇完成签到 ,获得积分10
18秒前
XXXCR7发布了新的文献求助10
19秒前
qqqw发布了新的文献求助10
20秒前
20秒前
ZT9发布了新的文献求助20
21秒前
卡皮巴拉完成签到,获得积分20
22秒前
愿好应助alooof采纳,获得10
24秒前
27秒前
华仔应助感性的俊驰采纳,获得10
28秒前
eric888应助IfItheonlyone采纳,获得80
30秒前
32秒前
碧蓝巧荷完成签到 ,获得积分10
32秒前
35秒前
124发布了新的文献求助10
36秒前
今后应助Luna采纳,获得10
36秒前
36秒前
科研通AI5应助任性友安采纳,获得10
36秒前
赘婿应助火速阿百川采纳,获得10
37秒前
jerry完成签到,获得积分20
39秒前
40秒前
40秒前
Yuki酱发布了新的文献求助10
41秒前
42秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4135600
求助须知:如何正确求助?哪些是违规求助? 3672270
关于积分的说明 11610533
捐赠科研通 3367931
什么是DOI,文献DOI怎么找? 1850232
邀请新用户注册赠送积分活动 913733
科研通“疑难数据库(出版商)”最低求助积分说明 828832