氧化剂
催化作用
铂金
反应性(心理学)
惰性气体
Atom(片上系统)
材料科学
热稳定性
氧化态
氧化还原
化学
光化学
化学工程
有机化学
复合材料
嵌入式系统
冶金
病理
替代医学
工程类
医学
计算机科学
作者
Dong Jiang,Yonggang Yao,Tangyuan Li,Gang Wan,Xavier Isidro Pereira Hernández,Yubing Lu,Jinshu Tian,Konstantin Khivantsev,Mark Engelhard,Cheng‐Jun Sun,Carlos Garcia Vargas,Adam S. Hoffman,Simon R. Bare,Abhaya K. Datye,Liangbing Hu,Yong Wang
标识
DOI:10.1002/anie.202108585
摘要
Abstract A single‐atom Pt 1 /CeO 2 catalyst formed by atom trapping (AT, 800 °C in air) shows excellent thermal stability but is inactive for CO oxidation at low temperatures owing to over‐stabilization of Pt 2+ in a highly symmetric square‐planar Pt 1 O 4 coordination environment. Reductive activation to form Pt nanoparticles (NPs) results in enhanced activity; however, the NPs are easily oxidized, leading to drastic activity loss. Herein we show that tailoring the local environment of isolated Pt 2+ by thermal‐shock (TS) synthesis leads to a highly active and thermally stable Pt 1 /CeO 2 catalyst. Ultrafast shockwaves (>1200 °C) in an inert atmosphere induced surface reconstruction of CeO 2 to generate Pt single atoms in an asymmetric Pt 1 O 4 configuration. Owing to this unique coordination, Pt 1 δ+ in a partially reduced state dynamically evolves during CO oxidation, resulting in exceptional low‐temperature performance. CO oxidation reactivity on the Pt 1 /CeO 2 _TS catalyst was retained under oxidizing conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI