亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Detection of Parkinson's Disease From Speech Using Voice Source Information

计算机科学 语音识别 韵律 发声 特征提取 分类器(UML) 人工智能 模式识别(心理学) 医学 听力学
作者
N. P. Narendra,Björn W. Schuller,Paavo Alku
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 1925-1936 被引量:79
标识
DOI:10.1109/taslp.2021.3078364
摘要

Developing automatic methods to detect Parkinson's disease (PD) from speech has attracted increasing interest as these techniques can potentially be used in telemonitoring health applications. This article studies the utilization of voice source information in the detection of PD using two classifier architectures: traditional pipeline approach and end-to-end approach. The former consists of feature extraction and classifier stages. In feature extraction, the baseline acoustic features-consisting of articulation, phonation, and prosody features-were computed and voice source information was extracted using glottal features that were estimated by iterative adaptive inverse filtering (IAIF) and quasi-closed phase (QCP) glottal inverse filtering methods. Support vector machine classifiers were developed utilizing the baseline and glottal features extracted from every speech utterance and the corresponding healthy/PD labels. The end-to-end approach uses deep learning models which were trained using both raw speech waveforms and raw voice source waveforms. In the latter, two glottal inverse filtering methods (IAIF and QCP) and zero frequency filtering method were utilized. The deep learning architecture consists of a combination of convolutional layers followed by a multilayer perceptron. Experiments were performed using PC-GITA speech database. From the traditional pipeline systems, the highest classification accuracy (67.93%) was given by combination of baseline and QCP-based glottal features. From the end-to-end-systems, the highest accuracy (68.56%) was given by the system trained using QCP-based glottal flow signals. Even though classification accuracies were modest for all systems, the study is encouraging as the extraction of voice source information was found to be most effective in both approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
牛八先生完成签到,获得积分10
47秒前
poki完成签到 ,获得积分10
51秒前
你的笑慌乱了我的骄傲完成签到 ,获得积分10
53秒前
1分钟前
1分钟前
yy完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
XIAOJU_U完成签到 ,获得积分10
3分钟前
3分钟前
脑洞疼应助你的背包采纳,获得10
3分钟前
3分钟前
优秀冰真发布了新的文献求助10
3分钟前
4分钟前
jy发布了新的文献求助10
4分钟前
4分钟前
huenguyenvan发布了新的文献求助10
4分钟前
彭于晏应助协和小飞龙采纳,获得10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
你的背包发布了新的文献求助10
6分钟前
你的背包完成签到,获得积分10
7分钟前
7分钟前
Fern完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
协和小飞龙完成签到,获得积分10
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
9分钟前
酷炫的咖啡豆应助Wei采纳,获得10
10分钟前
Tethys完成签到 ,获得积分10
10分钟前
英姑应助科研通管家采纳,获得10
10分钟前
10分钟前
jun完成签到,获得积分10
11分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3922146
求助须知:如何正确求助?哪些是违规求助? 3466855
关于积分的说明 10945511
捐赠科研通 3195777
什么是DOI,文献DOI怎么找? 1765860
邀请新用户注册赠送积分活动 855784
科研通“疑难数据库(出版商)”最低求助积分说明 795104