化学
系统间交叉
光敏剂
光化学
激发态
量子产额
光毒性
三重态
菁
光动力疗法
荧光
单重态
有机化学
分子
核物理学
体外
物理
量子力学
生物化学
作者
Xueze Zhao,Qichao Yao,Saran Long,Weijie Chi,Yuxin Yang,Davin Tan,Xiaogang Liu,Haiqiao Huang,Wen Sun,Jianjun Du,Jiangli Fan,Xiaojun Peng
摘要
Heavy-atom-based photosensitizers usually exhibit shortened triplet-state lifetimes, which is not ideal for hypoxic tumor photodynamic therapy. Although several heavy-atom-free photosensitizers possess long triplet-state lifetimes, the clinical applicability is limited by their short excitation wavelengths, poor photon capture abilities, and intrinsically hydrophobic structures. Herein we developed a novel NIR heavy-atom-free photosensitizer design strategy by introducing sterically bulky and electron-rich moieties at the meso position of the pentamethine cyanine (Cy5) skeleton, which simultaneously enhanced intersystem crossing (ISC) and prolonged excited-state lifetime. We found that the 1O2 generation ability is directly correlated to the electron-donating ability of the meso substituent in cyanine, and the excited-state lifetime was simultaneously much elongated when the substituents were anthracene derivatives substituted at the 9-position. Our star compound, ANOMe-Cy5, exhibits intense NIR absorption, the highest 1O2 quantum yield (4.48-fold higher than Cy5), the longest triplet-state lifetime (9.80-fold longer than Cy5), and lossless emission intensity (nearly no change compared with Cy5). Such excellent photophysical properties coupled with its inherently cationic and hydrophilic nature enable the photosensitizer to realize photoablation of solid tumor and antitumor lung metastasis. This study highlights the design of a new generation of NIR photosensitizers for imaging-guided photodynamic cancer treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI