Psoas muscle index predicts osteoporosis and fracture risk in individuals with degenerative spinal disease

弗雷克斯 医学 骨质疏松症 骨矿物 股骨颈 骨密度 内科学 体质指数 定量计算机断层扫描 骨质疏松性骨折
作者
Yuya Kajiki,Hironori Tsuji,Haruo Misawa,Ryuichi Nakahara,Tomoko Tetsunaga,Kentaro Yamane,Yoshiaki Oda,Shinichiro Takao,Toshifumi Ozaki
出处
期刊:Nutrition [Elsevier BV]
卷期号:93: 111428-111428 被引量:25
标识
DOI:10.1016/j.nut.2021.111428
摘要

Skeletal muscle loss and osteoporosis are major medical and socioeconomic concerns as the global population ages. Studies have reported that skeletal muscle mass correlates to bone mineral density (BMD). The psoas muscle index (PMI), measured as the L3 cross-sectional areas of the right and left psoas divided by the square of height, has a positive correlation with the total volume of skeletal muscle in the body. This study aimed to evaluate relationships between PMI and BMD and fracture risk estimated by the Fracture Risk Assessment Tool (FRAX).Preoperatively acquired, plain computed tomography images at the L3 level were used to measure PMI in 87 people with degenerative spinal diseases. We evaluated the correlation between PMI and BMD and fracture risk estimated by FRAX.PMI was significantly correlated with BMD in the entire lumbar spine and femoral neck (r = 0.413 and 0.525, both P < 0.001). People with osteoporosis showed significantly lower PMI than those without (P < 0.05). PMI was also significantly correlated with FRAX score (r = -0.545, P < 0.001). Furthermore, based on the recommendation of osteoporosis treatment, participants were divided into two groups: FRAX ≥15% (R group) and FRAX <15% (C group). The R group showed significantly lower PMI than the C group (P < 0.001). Receiver operating characteristic curve analysis revealed that PMI has moderate accuracy in diagnosing osteoporosis and FRAX ≥15%.PMI was significantly associated with BMD and fracture risk. PMI measurement is straightforward and may increase the diagnosis rate of osteoporosis and fracture risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
昕wei完成签到 ,获得积分10
2秒前
所所应助如常采纳,获得10
2秒前
莫丹完成签到,获得积分10
4秒前
4秒前
刘浩发布了新的文献求助10
5秒前
6秒前
顺心成仁发布了新的文献求助10
6秒前
Lxxixixi发布了新的文献求助10
7秒前
汉堡包应助xxxhhh采纳,获得10
7秒前
7秒前
jiulin完成签到,获得积分20
8秒前
9秒前
suzy-123完成签到,获得积分10
9秒前
WANG完成签到,获得积分10
11秒前
YUAN完成签到,获得积分10
11秒前
Ava应助bajiaomao采纳,获得10
11秒前
12秒前
12秒前
12秒前
轻松黄豆发布了新的文献求助10
13秒前
SciGPT应助感性的若云采纳,获得10
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
ding应助Wang采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
zhu96114748应助科研通管家采纳,获得10
14秒前
调皮黑猫发布了新的文献求助30
14秒前
田様应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得20
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
huiseXT应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
GIINJIU应助科研通管家采纳,获得10
15秒前
zhu96114748应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Benefit of Whole-Pelvis Radiation for Patients With Muscle-Invasive Bladder Cancer: An Inverse Probability Treatment Weighted Analysis 510
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4702801
求助须知:如何正确求助?哪些是违规求助? 4070568
关于积分的说明 12586380
捐赠科研通 3770854
什么是DOI,文献DOI怎么找? 2082692
邀请新用户注册赠送积分活动 1110027
科研通“疑难数据库(出版商)”最低求助积分说明 988066