Chapter 38: Hydrothermal Gold Deposition in Epithermal, Carlin, and Orogenic Deposits

热液循环 溶解度 氧化剂 黄铁矿 过饱和度 化学 硫化 矿物学 浸出(土壤学) 地质学 无机化学 硫黄 土壤科学 土壤水分 地震学 有机化学
作者
Stuart F. Simmons,Benjamin M. Tutolo,Shaun L.L. Barker,Richard J. Goldfarb,F. Robert
标识
DOI:10.5382/sp.23.38
摘要

Abstract Epithermal, Carlin, and orogenic Au deposits form in diverse geologic settings and over a wide range of depths, where Au precipitates from hydrothermal fluids in response to various physical and chemical processes. The compositions of Au-bearing sulfidic hydrothermal solutions across all three deposit types, however, are broadly similar. In most cases, they comprise low-salinity waters, which are reduced, have a near-neutral pH, and CO2 concentrations that range from <4 to >10 wt %. Experimental studies show that the main factor controlling the concentration of Au in hydrothermal solutions is the concentration of reduced S, and in the absence of Fe-bearing minerals, Au solubility is insensitive to temperature. In a solution containing ~300 ppm H2S, the maximum concentration of Au is ~1 ppm, representing a reasonable upper limit for many ore-forming solutions. Where Fe-bearing minerals are being converted to pyrite, Au solubility decreases as temperature cools due to the decreasing concentration of reduced S. High Au concentrations (~500 ppb) can also be achieved in strongly oxidizing and strongly acidic chloride solutions, reflecting chemical conditions that only develop during intense hydrolytic leaching in magmatic-hydrothermal high-sulfidation epithermal environments. Gold is also soluble at low to moderate levels (10–100 ppb) over a relatively wide range of pH values and redox states. The chemical mechanisms which induce Au deposition are divided into two broad groups. One involves achieving states of Au supersaturation through perturbations in solution equilibria caused by physical and chemical processes, involving phase separation (boiling), fluid mixing, and pyrite deposition via sulfidation of Fe-bearing minerals. The second involves the sorption of ionic Au on to the surfaces of growing sulfide crystals, mainly arsenian pyrite. Both groups of mechanisms have capability to produce ore, with distinct mineralogical and geochemical characteristics. Gold transport and deposition processes in the Taupo Volcanic Zone, New Zealand, show how ore-grade concentrations of Au can accumulate by two different mechanisms of precipitation, phase separation and sorption, in three separate hydrothermal environments. Phase separation caused by flashing, induced by depressurization and associated with energetic fluid flow in geothermal wells, produces sulfide precipitates containing up to 6 wt.% Au from a hydrothermal solution containing a few ppb Au. Sorption on to As-Sb-S colloids produces precipitates containing tens to hundreds of ppm Au in the Champagne Pool hot spring. Sorption on to As-rich pyrite also leads to anomalous endowments of Au of up to 1 ppm in hydrothermally altered volcanic rocks occurring in the subsurface. In all of these environments, Au-undersaturated solutions produce anomalous concentrations of Au that match and surpass typical ore-grade concentrations, indicating that near-saturated concentrations of dissolved metal are not a prerequisite for generating economic deposits of Au. The causes of Au deposition in epithermal deposits are related to sharp temperature-pressure gradients that induce phase separation (boiling) and mixing. In Carlin deposits, Au deposition is controlled by surface chemistry and sorption processes on to rims of As-rich pyrite. In orogenic deposits, at least two Au-depositing mechanisms appear to produce ore; one involves phase separation and the other involves sulfidation reactions during water-rock interaction that produces pyrite; a third mechanism involving codeposition of Au-As in sulfides might also be important. Differences in the regimes of hydrothermal fluid flow combined with mechanisms of Au precipitation play an important role in shaping the dimensions and geometries of ore zones. There is also a strong link between Au-depositing mechanisms and metallurgical characteristics of ores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ace_killer发布了新的文献求助10
1秒前
1秒前
偷乐发布了新的文献求助30
2秒前
科研通AI5应助sunshine采纳,获得10
2秒前
3秒前
4秒前
简单平蓝发布了新的文献求助10
5秒前
5秒前
5秒前
郁金香发布了新的文献求助10
6秒前
unique完成签到,获得积分10
7秒前
包佳梁发布了新的文献求助10
9秒前
9秒前
unique发布了新的文献求助10
10秒前
Co发布了新的文献求助10
10秒前
hulala发布了新的文献求助10
10秒前
郁金香完成签到,获得积分10
12秒前
荣耀发布了新的文献求助10
13秒前
14秒前
Rico发布了新的文献求助10
14秒前
master_jia完成签到,获得积分10
15秒前
WDK完成签到,获得积分10
16秒前
隐形曼青应助sxp1031采纳,获得10
19秒前
美满的小蘑菇完成签到 ,获得积分10
19秒前
19秒前
lxw完成签到 ,获得积分10
21秒前
Yiyyan完成签到,获得积分10
22秒前
Co完成签到 ,获得积分10
23秒前
冰魂应助科研通管家采纳,获得10
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
乔垣结衣应助科研通管家采纳,获得10
24秒前
领导范儿应助科研通管家采纳,获得10
24秒前
24秒前
顾矜应助科研通管家采纳,获得10
24秒前
CodeCraft应助科研通管家采纳,获得10
24秒前
赘婿应助科研通管家采纳,获得10
24秒前
大模型应助科研通管家采纳,获得10
25秒前
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778324
求助须知:如何正确求助?哪些是违规求助? 3323927
关于积分的说明 10216572
捐赠科研通 3039206
什么是DOI,文献DOI怎么找? 1667877
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758385