已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Anatomy of Continuous Mars SEIS and Pressure Data from Unsupervised Learning

火星探测计划 聚类分析 地震计 噪音(视频) 计算机科学 无监督学习 人工智能 深度学习 火星人 地质学 微震 模式识别(心理学) 地震学 物理 图像(数学) 天文
作者
Salma Barkaoui,Philippe Lognonné,Taïchi Kawamura,É. Stutzmann,Léonard Seydoux,Maarten V. de Hoop,Randall Balestriero,John‐Robert Scholz,G. Sainton,Matthieu Plasman,Savas Ceylan,John Clinton,Aymeric Spiga,Rudolf Widmer‐Schnidrig,F. Civilini,W. B. Banerdt
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society of America]
卷期号:111 (6): 2964-2981 被引量:22
标识
DOI:10.1785/0120210095
摘要

ABSTRACT The seismic noise recorded by the Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) seismometer (Seismic Experiment for Interior Structure [SEIS]) has a strong daily quasi-periodicity and numerous transient microevents, associated mostly with an active Martian environment with wind bursts, pressure drops, in addition to thermally induced lander and instrument cracks. That noise is far from the Earth’s microseismic noise. Quantifying the importance of nonstochasticity and identifying these microevents is mandatory for improving continuous data quality and noise analysis techniques, including autocorrelation. Cataloging these events has so far been made with specific algorithms and operator’s visual inspection. We investigate here the continuous data with an unsupervised deep-learning approach built on a deep scattering network. This leads to the successful detection and clustering of these microevents as well as better determination of daily cycles associated with changes in the intensity and color of the background noise. We first provide a description of our approach, and then present the learned clusters followed by a study of their origin and associated physical phenomena. We show that the clustering is robust over several Martian days, showing distinct types of glitches that repeat at a rate of several tens per sol with stable time differences. We show that the clustering and detection efficiency for pressure drops and glitches is comparable to or better than manual or targeted detection techniques proposed to date, noticeably with an unsupervised approach. Finally, we discuss the origin of other clusters found, especially glitch sequences with stable time offsets that might generate artifacts in autocorrelation analyses. We conclude with presenting the potential of unsupervised learning for long-term space mission operations, in particular, for geophysical and environmental observatories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
balzacsun发布了新的文献求助10
2秒前
123发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
英姑应助安静的瑾瑜采纳,获得10
4秒前
5秒前
隐形曼青应助HL采纳,获得10
5秒前
张海洋应助搜文献的北北采纳,获得10
6秒前
7秒前
7秒前
dery发布了新的文献求助10
9秒前
9秒前
10秒前
iu发布了新的文献求助10
10秒前
奇趣糖发布了新的文献求助10
10秒前
10秒前
Ldq完成签到 ,获得积分10
11秒前
11秒前
徐小赞发布了新的文献求助10
11秒前
精明一寡发布了新的文献求助10
12秒前
Qiang发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
司空豁发布了新的文献求助10
15秒前
科研狗发布了新的文献求助10
15秒前
希望天下0贩的0应助iu采纳,获得10
15秒前
zzzzzzLARS发布了新的文献求助10
15秒前
研友_VZG7GZ应助小骆采纳,获得10
15秒前
yaoyao发布了新的文献求助10
16秒前
spy完成签到 ,获得积分10
16秒前
852应助dery采纳,获得10
16秒前
Doyle完成签到,获得积分10
17秒前
17秒前
wantingqq123发布了新的文献求助10
19秒前
19秒前
知了完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
Learning to Listen, Listening to Learn 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881380
求助须知:如何正确求助?哪些是违规求助? 3423748
关于积分的说明 10735981
捐赠科研通 3148690
什么是DOI,文献DOI怎么找? 1737352
邀请新用户注册赠送积分活动 838802
科研通“疑难数据库(出版商)”最低求助积分说明 784087