Real-time nondestructive fish behavior detecting in mixed polyculture system using deep-learning and low-cost devices

计算机科学 人工智能 水产养殖 水下 深度学习 噪音(视频) 计算机视觉 机器学习 模式识别(心理学) 多元文化 图像(数学) 渔业 海洋学 生物 地质学
作者
Jun Hu,Dandan Zhao,Yanfeng Zhang,Chengquan Zhou,Wenxuan Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:178: 115051-115051 被引量:64
标识
DOI:10.1016/j.eswa.2021.115051
摘要

Fish behavior has attracted increasing attention in global aquaculture because it provides important information about productivity and fish quality. The use of images to detect fish behavior has shown potential in aquaculture behavioral studies by providing higher spatial resolution, efficiency, and accuracy than conventional approaches such as manual measurement. In addition, it allows for more quantitative data analysis than do other methods. To date, conventional image processing approaches to monitor fish behavior have been based primarily on appearance, morphology, and color information. This approach is complex and/or time-consuming and limits the practicality of such methods in aquaculture. To address these problems, we present herein a noninvasive, rapid, low-cost procedure based on an underwater imaging system and a deep learning framework to detect fish behavior with high accuracy in a mixed polyculture system. The specific objectives of this study are (1) to design a low-cost underwater imaging system that can describe and quantify fish behavior via visual images, and (2) to develop a lightweight deep learning structure to rapidly and accurately detect fish behavior under various conditions. Toward this end, images of fish are first captured via a low-cost imaging system, following which they are preprocessed to reduce noise and enhance data information. Finally, an improved You Only Look Once version 3 Lite (YOLOv3-Lite) network with a novel backbone structure is used to improve the pooling block and loss function and thereby better recognize fish behavior. The proposed method was tested on a real dataset and produced a Precision of 0.897, a Recall of 0.884, an intersection over union of 0.892, and 240 frames per second. Furthermore, when compared with faster region-convolutional neural network, YOLO, YOLOv2, YOLOv3, and single shot multi-Box detector, the performance of each evaluation metric of the proposed method was improved by 10%–20%. This comprehensive analysis indicates that the proposed method provides state-of-the-art performance and may be used in fish farms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴嘉俊发布了新的文献求助10
1秒前
天天快乐应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
Steven发布了新的文献求助10
10秒前
谦让的新之完成签到 ,获得积分10
12秒前
阿kkk完成签到,获得积分10
18秒前
18秒前
烟花应助宿刚采纳,获得10
20秒前
22秒前
能干向露完成签到,获得积分10
23秒前
小星星发布了新的文献求助10
26秒前
ttyhtg完成签到,获得积分10
27秒前
32秒前
坚定的若雁完成签到,获得积分10
33秒前
36秒前
太渊完成签到 ,获得积分10
37秒前
马小鱼完成签到,获得积分10
39秒前
怡然幻然发布了新的文献求助10
40秒前
bkagyin应助含糊的思松采纳,获得10
42秒前
加油加油发布了新的文献求助10
42秒前
张云雷的大闸蟹完成签到,获得积分20
50秒前
梦XING完成签到 ,获得积分10
53秒前
54秒前
井中月发布了新的文献求助10
55秒前
小神龙完成签到 ,获得积分10
55秒前
哈哈哈哈完成签到 ,获得积分10
56秒前
怡然幻然完成签到,获得积分10
57秒前
1分钟前
1分钟前
完美世界应助uzumay采纳,获得10
1分钟前
科研通AI5应助得我采纳,获得10
1分钟前
青春发布了新的文献求助10
1分钟前
1分钟前
11发布了新的文献求助10
1分钟前
Jiaowen发布了新的文献求助10
1分钟前
是小雨呀完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781398
求助须知:如何正确求助?哪些是违规求助? 3326904
关于积分的说明 10228702
捐赠科研通 3041878
什么是DOI,文献DOI怎么找? 1669613
邀请新用户注册赠送积分活动 799161
科研通“疑难数据库(出版商)”最低求助积分说明 758751