已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Preparing for AI-enhanced education: Conceptualizing and empirically examining teachers’ AI readiness

心理学 认知 认知需要 数学教育 学校教师 结构方程建模 计算机科学 机器学习 神经科学
作者
Xinghua Wang,Linlin Li,Seng Chee Tan,Lu Yang,Jun Lei
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:146: 107798-107798 被引量:170
标识
DOI:10.1016/j.chb.2023.107798
摘要

Teachers are at the front lines of implementing artificial intelligence (AI) in education. They are expected to develop an adequate understanding of AI and become educated users as well as educators. Their readiness for the use of AI is critical for the success of AI-enhanced education. The present study conceptualized AI readiness from four components: cognition, ability, vision, and ethics in the educational use of AI, and investigated their interrelationships and their implications for teachers' work. The data from 3164 primary school teachers were collected and analyzed by partial least square structural equation modelling and cluster analysis. This study found that cognition, ability, and vision in the educational use of AI were positively associated with ethical considerations. The four components of AI readiness all positively predicted, whereas perceived threats from AI negatively predicted, AI-enhanced innovation, which in turn positively predicted teachers' job satisfaction. This study identified three clusters of teachers based on their AI readiness levels. Teachers with high levels of AI readiness tended to perceive low threats from AI and demonstrate high AI-enhanced innovation as well as high job satisfaction. However, teachers from different socio-economic regions and of different genders showed no significant differences regarding AI readiness and its impact on their jobs. This study empirically validated the importance of AI readiness for teachers’ work and has important implications for the development of strategies and policies facilitating successful AI-enhanced education.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得10
刚刚
GingerF应助科研通管家采纳,获得50
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
Criminology34应助科研通管家采纳,获得20
刚刚
Hello应助10128采纳,获得20
刚刚
leo7发布了新的文献求助10
1秒前
开心点完成签到 ,获得积分10
2秒前
侯松发布了新的文献求助30
3秒前
哈皮波完成签到,获得积分10
4秒前
4秒前
kjw0708完成签到 ,获得积分10
6秒前
6秒前
tly发布了新的文献求助10
9秒前
杜飞完成签到,获得积分10
11秒前
11秒前
genius完成签到 ,获得积分10
12秒前
小蘑菇应助leo7采纳,获得10
12秒前
青竹完成签到,获得积分10
13秒前
epmoct完成签到 ,获得积分10
14秒前
15秒前
orixero应助TCMning采纳,获得10
15秒前
吴瑀靖完成签到,获得积分10
17秒前
YI完成签到,获得积分10
18秒前
19秒前
imp发布了新的文献求助10
24秒前
25秒前
25秒前
lively发布了新的文献求助10
26秒前
山山完成签到 ,获得积分10
29秒前
ychen发布了新的文献求助10
29秒前
29秒前
kai chen完成签到 ,获得积分0
29秒前
草上飞完成签到 ,获得积分10
31秒前
星辰大海应助侯松采纳,获得10
31秒前
要减肥书桃完成签到 ,获得积分10
32秒前
lively完成签到,获得积分10
32秒前
33秒前
浮游应助tly采纳,获得10
34秒前
Elthrai完成签到 ,获得积分10
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356201
求助须知:如何正确求助?哪些是违规求助? 4488058
关于积分的说明 13971574
捐赠科研通 4388833
什么是DOI,文献DOI怎么找? 2411257
邀请新用户注册赠送积分活动 1403802
关于科研通互助平台的介绍 1377590