清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Noninvasive Measurement of Vital Signs With the Optical Fiber Sensor Based on Deep Learning

希尔伯特-黄变换 心脏超声心动图 计算机科学 干扰(通信) 人工智能 信号(编程语言) 深度学习 光纤 模式识别(心理学) 电信 医学 白噪声 内科学 频道(广播) 程序设计语言
作者
Qing Wang,Weimin Lyu,Zhi Cheng,Changyuan Yu
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:41 (13): 4452-4462 被引量:24
标识
DOI:10.1109/jlt.2023.3250670
摘要

As a vital sign of human, ballistocardiography (BCG) signal is widely used to indicate the health status of an individual. It can be captured by optical fiber sensor in a non-invasive way. Besides, some significant physiological information, such as heart rate (HR) and respiration rate (RR), can also be extracted from BCG signal. As a medical instrument characterized by low power consumption, no interference, no invasion and the capability of real-time health monitoring, optical fiber sensor provides an effective solution to health care monitoring. However, when long-term monitoring of HR and RR is required for patients, it is necessary to collect a large amount of BCG data, which incurs a considerable amount of time and labor costs. To solve this problem, a novel deep learning model is proposed in this paper, namely ELA. Long-short term memory (LSTM) has the capability to memorize long-distance information states. According to this method, the improved empirical mode decomposition (EMD) algorithm (VEMD) is applied to convert the complex problem of HR and RR time series prediction into multiple sub-problems with relatively simple intrinsic mode function (IMF) component sequence prediction. Then, the proposed ELA model is adopted to model the HR and RR sub-sequences decomposed by VEMD. Accordingly, the results of IMF component subsequence prediction are obtained, with all the prediction results linearly summed to obtain the final prediction result. Moreover, experimental results are obtained to demonstrate the superiority of ELA and the R 2 is 0.9946, indicating the excellent performance of the proposed model in the assessment and prediction of vital signs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hans完成签到,获得积分10
13秒前
黑大侠完成签到 ,获得积分0
20秒前
25秒前
幸福大白发布了新的文献求助10
29秒前
领导范儿应助车耷采纳,获得10
1分钟前
水寒风似刀关注了科研通微信公众号
1分钟前
大模型应助ping采纳,获得10
1分钟前
852应助幸福大白采纳,获得10
1分钟前
Jasper应助幸福大白采纳,获得10
1分钟前
1分钟前
1分钟前
幸福大白发布了新的文献求助10
1分钟前
1分钟前
桃知予发布了新的文献求助10
1分钟前
1分钟前
2分钟前
幸福大白发布了新的文献求助10
2分钟前
105400155完成签到,获得积分10
2分钟前
ping发布了新的文献求助10
2分钟前
隐形曼青应助桃知予采纳,获得10
2分钟前
桃知予完成签到 ,获得积分10
2分钟前
今后应助金钰贝儿采纳,获得10
2分钟前
2分钟前
鲤角兽完成签到,获得积分10
2分钟前
车耷发布了新的文献求助10
2分钟前
水寒风似刀完成签到,获得积分10
2分钟前
3分钟前
幸福大白发布了新的文献求助10
3分钟前
共享精神应助ping采纳,获得10
3分钟前
李海艳完成签到,获得积分10
3分钟前
4分钟前
ping发布了新的文献求助10
4分钟前
ramsey33完成签到 ,获得积分10
4分钟前
龙猫爱看书完成签到,获得积分10
4分钟前
bkagyin应助幸福大白采纳,获得10
4分钟前
Tayzon完成签到 ,获得积分10
5分钟前
大个应助幸福大白采纳,获得10
5分钟前
乐乐应助幸福大白采纳,获得10
5分钟前
大模型应助ping采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569564
求助须知:如何正确求助?哪些是违规求助? 3991629
关于积分的说明 12356056
捐赠科研通 3664000
什么是DOI,文献DOI怎么找? 2019197
邀请新用户注册赠送积分活动 1053683
科研通“疑难数据库(出版商)”最低求助积分说明 941203