Laplacian2Mesh: Laplacian-Based Mesh Understanding

计算机科学 拉普拉斯平滑 计算机图形学(图像) 网格生成 有限元法 工程类 结构工程
作者
Qiujie Dong,Zixiong Wang,Manyi Li,Junjie Gao,Shuangmin Chen,Zhenyu Shu,Shiqing Xin,Changhe Tu,Wenping Wang
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:30 (7): 4349-4361 被引量:35
标识
DOI:10.1109/tvcg.2023.3259044
摘要

Geometric deep learning has sparked a rising interest in computer graphics to perform shape understanding tasks, such as shape classification and semantic segmentation. When the input is a polygonal surface, one has to suffer from the irregular mesh structure. Motivated by the geometric spectral theory, we introduce Laplacian2Mesh , a novel and flexible convolutional neural network (CNN) framework for coping with irregular triangle meshes (vertices may have any valence). By mapping the input mesh surface to the multi-dimensional Laplacian-Beltrami space, Laplacian2Mesh enables one to perform shape analysis tasks directly using the mature CNNs, without the need to deal with the irregular connectivity of the mesh structure. We further define a mesh pooling operation such that the receptive field of the network can be expanded while retaining the original vertex set as well as the connections between them. Besides, we introduce a channel-wise self-attention block to learn the individual importance of feature ingredients. Laplacian2Mesh not only decouples the geometry from the irregular connectivity of the mesh structure but also better captures the global features that are central to shape classification and segmentation. Extensive tests on various datasets demonstrate the effectiveness and efficiency of Laplacian2Mesh, particularly in terms of the capability of being vulnerable to noise to fulfill various learning tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zik应助FLZLC采纳,获得10
1秒前
Sunflower发布了新的文献求助10
1秒前
靓仔完成签到,获得积分10
1秒前
1秒前
嘟嘟完成签到,获得积分10
3秒前
shiyu发布了新的文献求助10
3秒前
无花果应助汀汀采纳,获得10
3秒前
领导范儿应助正直的西牛采纳,获得10
3秒前
顾矜应助guojingjing采纳,获得10
3秒前
4秒前
NOT完成签到 ,获得积分10
4秒前
思源应助科研通管家采纳,获得10
4秒前
温冰雪应助科研通管家采纳,获得10
4秒前
Lmmcer发布了新的文献求助10
4秒前
tanc完成签到,获得积分10
4秒前
4秒前
小蘑菇应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
4秒前
所所应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
5秒前
殊荣发布了新的文献求助10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620209
求助须知:如何正确求助?哪些是违规求助? 4704776
关于积分的说明 14929465
捐赠科研通 4761390
什么是DOI,文献DOI怎么找? 2550902
邀请新用户注册赠送积分活动 1513652
关于科研通互助平台的介绍 1474573