Identification of factors influencing the riding experience on e-mountain bikes: An analysis of the rider-bicycle interaction

节奏 自感劳累 工作(物理) 心理学 搭便车 应用心理学 物理医学与康复 工程类 激励 医学 经济 放射科 机械工程 心率 血压 微观经济学
作者
Annika Laqua,Jan Schnee,Jo Pletinckx,Martin Meywerk
出处
期刊:Transportation Research Part F-traffic Psychology and Behaviour [Elsevier]
卷期号:98: 61-72 被引量:2
标识
DOI:10.1016/j.trf.2023.08.008
摘要

E-bike riding contributes to a more sustainable lifestyle by offering health and environmental benefits. Especially e-mountain bikes enjoy great popularity in hilly areas. Although the frequency of use depends substantially on the perceived riding experience, little is known about factors influencing the riding experience. The present work aimed to explore factors influencing the riding experience on e-mountain bikes using a two-step approach. Subjective and objective factors influencing the riding experience were determined through qualitative content analysis of data collected in an interview study (Study 1) with 23 active e-mountain bike riders. Results from Study 1 identified riding performance, consisting of perceived handling, exertion and motor performance as a subjective impact factor of the riding experience. Rider behaviour, which is composed of rider cadence and rider torque, motor power and riding dynamics such as speed were identified as objective impact factors of the riding experience. In a next step, the impact of the determined factors was examined with multiple linear regression analysis applied to data collected in a cycling study (Study 2) with 80 active mountain bikers. The data from Study 2 was recorded on a forest uphill track with e-mountain bikes that provided different motor assistance. Results from Study 2 confirmed that high motor performance, good handling and reduced exertion contributed to a positive riding experience (ad. R2=.68, F(3,446)=325.2, p<.001). Increased rider cadence and rider torque affected the riding experience negatively while increased motor power and speed affected the riding experience positively (ad. R2=.40, F(4,445)=75.89, p<.001). The findings of the present work help to improve the riding experience on e-mountain bikes by revealing influencing factors and their impact on the riding experience.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王博林发布了新的文献求助10
1秒前
Jasper应助猪猪hero采纳,获得10
1秒前
1秒前
蓝天0812完成签到,获得积分10
1秒前
WYF1996完成签到,获得积分20
1秒前
wanci应助惠惠采纳,获得10
2秒前
小肉包发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
DJ发布了新的文献求助10
3秒前
上官蔚蓝发布了新的文献求助10
3秒前
JamesPei应助专注的曼寒采纳,获得10
3秒前
polkmn完成签到,获得积分10
3秒前
3秒前
彩色小鸽子完成签到,获得积分10
4秒前
筱姐姐发布了新的文献求助10
4秒前
4秒前
科目三应助GHJ采纳,获得10
4秒前
Jasper应助小肉包采纳,获得10
6秒前
jujumaomao完成签到,获得积分10
6秒前
122发布了新的文献求助10
6秒前
6秒前
安眠药完成签到 ,获得积分10
7秒前
杨杨关注了科研通微信公众号
7秒前
Suaia完成签到,获得积分10
7秒前
闪闪的荟完成签到,获得积分10
7秒前
姜且发布了新的文献求助10
7秒前
7秒前
8秒前
千风完成签到,获得积分10
8秒前
fys完成签到,获得积分10
8秒前
8秒前
8秒前
自由发布了新的文献求助10
9秒前
优雅依玉发布了新的文献求助10
9秒前
Shaw发布了新的文献求助10
9秒前
wuy发布了新的文献求助10
9秒前
10秒前
Wangdx完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887