Predictive Maintenance in the Industry: A Comparative Study on Deep Learning-based Remaining Useful Life Estimation

管道(软件) 计算机科学 领域(数学) 过程(计算) 机器学习 特征工程 人工智能 深度学习 预测性维护 特征提取 估计 特征(语言学) 可靠性工程 工程类 系统工程 操作系统 纯数学 程序设计语言 哲学 语言学 数学
作者
Luciano Lorenti,Davide Dalle Pezze,Jacopo Andreoli,Chiara Masiero,Natalie Gentner,Yao Yang,Gian Antonio Susto
标识
DOI:10.1109/indin51400.2023.10218065
摘要

Predictive Maintenance (PdM) aims to detect forth-coming failures in machinery to reduce costs associated with defective products and equipment inactivity. Remaining Useful Life (RUL) estimation is the most common approach in PdM: in this formalization, forecast or regression models aim at predicting the time/process iterations left before machinery loses its operation ability or a failure happens. In the RUL literature, Deep Learning (DL) algorithms are typically the preferred choice because they achieve high performance and can automatically handle the feature extraction phase. Usually, developed DL architectures are application or equipment specific; thus, there is no clear way to select, design, or implement such architectures. However, the research usually does not justify the choice of one architecture over another that may potentially work for the same problem. In addition, many of the reviewed papers do not investigate the computational complexity of these techniques, which is a critical aspect of real-time applications. In this work, we compare the most widely used deep learning architectures for performing RUL estimation in four datasets: two public datasets known in the PdM research community and two confidential industrial datasets. Moreover, we release a library called CeRULEo, to support the research within this field, speeding up the development of RUL models and providing a complete pre-processing pipeline for dataset handling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晗晗有酒窝完成签到,获得积分10
1秒前
今后应助huang采纳,获得10
3秒前
6秒前
卓儿完成签到,获得积分10
6秒前
jyy关闭了jyy文献求助
9秒前
摸鱼划水完成签到,获得积分10
9秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
1111应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得30
10秒前
852应助科研通管家采纳,获得10
10秒前
也是难得取个名完成签到 ,获得积分10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
11秒前
1111应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
wang完成签到,获得积分10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
满天星发布了新的文献求助20
11秒前
小二郎应助科研通管家采纳,获得30
11秒前
田様应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
YamDaamCaa应助科研通管家采纳,获得200
11秒前
李健应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
caibaozi应助科研通管家采纳,获得20
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
lssupreme应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
13秒前
13秒前
orixero应助科研通管家采纳,获得10
13秒前
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662