AffinityVAE: A multi-objective model for protein-ligand affinity prediction and drug design

可解释性 自编码 计算机科学 人工智能 机器学习 特征(语言学) 配体(生物化学) 蛋白质配体 集合(抽象数据类型) 药物发现 数据挖掘 化学 人工神经网络 生物信息学 生物 哲学 语言学 生物化学 受体 有机化学 程序设计语言
作者
Mengying Wang,Weimin Li,Yu Xiao,Yin Luo,Ke Han,Can Wang,Qun Jin
出处
期刊:Computational Biology and Chemistry [Elsevier BV]
卷期号:107: 107971-107971 被引量:9
标识
DOI:10.1016/j.compbiolchem.2023.107971
摘要

In the prediction of protein-ligand affinity, the traditional methods require a large amount of computing resources, and have certain limitations in predicting and simulating the structural changes. Although employing data-driven approaches can yield favorable outcomes in deep learning, it entails a lack of interpretability. Some methods may require additional structural information or domain knowledge to support the interpretation, which may limit their applicability. This paper proposes an affinity variational autoencoder (AffinityVAE) using interaction feature mapping and a variational autoencoder, which consists of a multi-objective model capable of end-to-end affinity prediction and drug discovery. In this study, the limitations of affinity prediction in terms of interpretability are tackled by proposing the concept of a protein-ligand interaction feature map. This increases the diversity and quantity of protein-ligand binding data by designing an adaptive autoencoder of target chemical properties to generate new ligands similar to known ligands and adding them to the original training set. AffinityVAE is then retrained using this extended training set to further validate the protein-ligand binding affinity prediction. Comparisons were conducted between the AffinityVAE and recent methods to demonstrate the high efficiency of the proposed model. The experimental results show that AffinityVAE has very high prediction performance, and it has the potential to enhance the diversity and the amount of protein-ligand binding data, which promotes the drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vsoar完成签到,获得积分10
刚刚
刚刚
小奥雄完成签到,获得积分10
1秒前
jitianxing完成签到,获得积分10
2秒前
沉默书蕾发布了新的文献求助10
3秒前
Orange应助六七采纳,获得10
3秒前
麦子完成签到,获得积分10
4秒前
916应助苏里SuLi_ALL采纳,获得10
4秒前
cloud发布了新的文献求助10
5秒前
谢清然完成签到,获得积分10
5秒前
蛋挞没有挞完成签到,获得积分10
5秒前
maoyingji完成签到,获得积分10
5秒前
LuLan0401完成签到,获得积分10
5秒前
neversay4ever发布了新的文献求助10
5秒前
purple完成签到,获得积分10
6秒前
6秒前
Ehgnix发布了新的文献求助10
7秒前
Meyako应助喜欢朝雪采纳,获得10
7秒前
雷含灵完成签到,获得积分10
7秒前
century完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
王粒完成签到,获得积分10
8秒前
TiAmo完成签到,获得积分10
8秒前
8秒前
9秒前
吴鹏飞完成签到,获得积分10
9秒前
快乐难敌发布了新的文献求助10
10秒前
10秒前
zxd发布了新的文献求助10
10秒前
草履虫完成签到,获得积分10
11秒前
YSSY完成签到,获得积分10
11秒前
fhhkckk3完成签到,获得积分10
11秒前
hkh发布了新的文献求助10
12秒前
lew发布了新的文献求助10
12秒前
13秒前
13秒前
科研通AI5应助明亮的若南采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Absent Here 200
Methods of optimization 200
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4346692
求助须知:如何正确求助?哪些是违规求助? 3853028
关于积分的说明 12026459
捐赠科研通 3494565
什么是DOI,文献DOI怎么找? 1917409
邀请新用户注册赠送积分活动 960363
科研通“疑难数据库(出版商)”最低求助积分说明 860280