亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Revisiting the dynamics of gaseous ammonia and ammonium aerosols during the COVID-19 lockdown in urban Beijing using machine learning models

北京 环境科学 气溶胶 氮氧化物 大气科学 2019年冠状病毒病(COVID-19) 气象学 环境化学 化学 地理 中国 医学 疾病 考古 有机化学 病理 地质学 传染病(医学专业) 燃烧
作者
Yixuan Lyu,Qianqian Zhang,Qian Sun,Mengna Gu,Yuexin He,Wendell W. Walters,Yele Sun,Yuepeng Pan
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:905: 166946-166946 被引量:2
标识
DOI:10.1016/j.scitotenv.2023.166946
摘要

The concentration of atmospheric ammonia (NH3) in urban Beijing substantially decreased during the COVID-19 lockdown (24 January to 3 March 2020), likely due to the reduced human activities. However, quantifying the impact of anthropogenic interventions on NH3 dynamics is challenging, as both meteorology and chemistry mask the real changes in observed NH3 concentrations. Here, we applied machine learning techniques based on random forest models to decouple the impacts of meteorology and emission changes on the gaseous NH3 and ammonium aerosol (NH4+) concentrations in Beijing during the lockdown. Our results showed that the meteorological conditions were unfavorable during the lockdown and tended to cause an increase of 8.4 % in the NH3 concentration. In addition, significant reductions in NOx and SO2 emissions could also elevate NH3 concentrations by favoring NH3 gas-phase partitioning. However, the observed NH3 concentration significantly decreased by 35.9 % during the lockdown, indicating a significant reduction in emissions or enhanced chemical sinks. Rapid gas-to-particle conversion was indeed found during the lockdown. Thus, the observed reduced NH3 concentrations could be partially explained by the enhanced transformation into NH4+. Therefore, the sum of NH3 and NH4+ (collectively, NHx) is a more reliable tracer than NH3 or NH4+ alone to estimate the changes in NH3 emissions. Compared to that under the scenario without lockdowns, the NHx concentration decreased by 26.4 %. We considered that this decrease represents the real decrease in NH3 emissions in Beijing due to the lockdown measures, which was less of a decrease than that based on NH3 only (35.9 %). This study highlights the importance of considering chemical sinks in the atmosphere when applying machine learning techniques to link the concentrations of reactive species with their emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HuiHui完成签到,获得积分10
4秒前
馆长应助sho采纳,获得30
11秒前
馆长应助sho采纳,获得30
21秒前
Wong完成签到,获得积分10
40秒前
科研通AI5应助科研通管家采纳,获得10
51秒前
馆长应助sho采纳,获得30
55秒前
馆长应助sho采纳,获得30
1分钟前
繁觅完成签到,获得积分10
3分钟前
sho完成签到,获得积分10
3分钟前
馆长应助sho采纳,获得30
3分钟前
脑洞疼应助cloud采纳,获得10
4分钟前
4分钟前
cloud发布了新的文献求助10
4分钟前
馆长应助sho采纳,获得30
4分钟前
cloud完成签到,获得积分10
4分钟前
4分钟前
krajicek完成签到,获得积分10
4分钟前
4分钟前
5分钟前
落落完成签到 ,获得积分0
5分钟前
5分钟前
雨jia发布了新的文献求助10
5分钟前
独特的追命应助雨jia采纳,获得10
5分钟前
牛八先生完成签到,获得积分10
6分钟前
Jasper应助微笑的天德采纳,获得10
6分钟前
6分钟前
enternow完成签到 ,获得积分10
6分钟前
8分钟前
8分钟前
华仔应助科研通管家采纳,获得10
8分钟前
Leedesweet完成签到 ,获得积分10
9分钟前
9分钟前
bo完成签到 ,获得积分10
10分钟前
10分钟前
bluesmile完成签到,获得积分10
10分钟前
11分钟前
KSDalton发布了新的文献求助10
11分钟前
11分钟前
傲娇老五发布了新的文献求助10
11分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4773733
求助须知:如何正确求助?哪些是违规求助? 4107138
关于积分的说明 12704556
捐赠科研通 3827543
什么是DOI,文献DOI怎么找? 2111668
邀请新用户注册赠送积分活动 1135662
关于科研通互助平台的介绍 1018711