Machine learning prediction of structural dynamic responses using graph neural networks

计算机科学 外推法 水准点(测量) 插值(计算机图形学) 人工神经网络 领域(数学) 流离失所(心理学) 代表(政治) 图形 机器学习 算法 数学优化 人工智能 数学 理论计算机科学 图像(数学) 心理学 数学分析 大地测量学 政治 政治学 纯数学 法学 心理治疗师 地理
作者
Qilin Li,Zitong Wang,Ling Li,Hong Hao,Wensu Chen,Yanda Shao
出处
期刊:Computers & Structures [Elsevier BV]
卷期号:289: 107188-107188 被引量:33
标识
DOI:10.1016/j.compstruc.2023.107188
摘要

Prediction of structural responses is essential for the analysis of structural behaviour subjected to dynamic loads. Existing approaches are limited in different ways. Experimental tests are expensive due to the requirement of intensive labour hours and specialised equipment. Numerical models can provide high-fidelity and labour-effective simulation of impact tests after proper validation, but it comes with high computational costs, which prohibit the usage of numerical methods for intensive and large-scale simulations in a design office. Data-driven machine learning approaches are also applied to structural response predictions, but they often exploit direct input–output mapping schemes that predict static field variables without capturing the dynamic response process. To close these gaps, we propose a novel machine learning approach based on graph neural networks (GNN) for full-field structural dynamics prediction. Our approach adopts a discretised representation of structures with an iterative rollout prediction scheme, and therefore it can simulate comprehensive spatiotemporal structural dynamics, providing the full potential for structural dynamics analysis. With several benchmark tests, it is demonstrated that our approach can generate accurate predictions of related field variables, e.g., displacement, strain, and stress, for different structures with a wide range of input parameters, such as structure geometry, impact speed and location. Additional interpolation and extrapolation tests are also conducted to show that our approach enjoys inherent generalisability and can produce satisfactory prediction even when all inputs are sampled outside of the training distribution. Our approach is also efficient and runs an order of magnitude faster than the commonly used numerical competitors. As the first attempt of using GNN for structural dynamics prediction and the result is promising, it is believed that GNN is well-suited for effective and efficient prediction of dynamic structural responses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火辣蛤蟆发布了新的文献求助150
1秒前
gjlt发布了新的文献求助10
1秒前
邱祺云发布了新的文献求助10
1秒前
2秒前
aeriki关注了科研通微信公众号
3秒前
wyg117发布了新的文献求助10
3秒前
大雯仔发布了新的文献求助10
5秒前
还原苯醌完成签到,获得积分10
5秒前
6秒前
菜菜子完成签到,获得积分20
6秒前
luoman5656完成签到,获得积分10
7秒前
完美世界应助木易采纳,获得10
8秒前
8秒前
Akim应助小超人采纳,获得10
9秒前
YBW完成签到,获得积分20
10秒前
11秒前
小沈小沈发布了新的文献求助10
12秒前
大雯仔完成签到,获得积分10
13秒前
哈尔婧发布了新的文献求助10
14秒前
16秒前
16秒前
16秒前
zcc发布了新的文献求助10
17秒前
17秒前
FashionBoy应助ee采纳,获得10
18秒前
英俊的铭应助张wx_100采纳,获得10
18秒前
ls应助lllllllulu采纳,获得10
20秒前
谭青青发布了新的文献求助10
20秒前
21秒前
木易发布了新的文献求助10
21秒前
21秒前
21秒前
体贴幼晴发布了新的文献求助10
22秒前
23秒前
23秒前
鱼乐乐完成签到,获得积分10
23秒前
科研通AI5应助小超人采纳,获得10
24秒前
梦会故乡发布了新的文献求助10
24秒前
一一发布了新的文献求助10
24秒前
LYL发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Theoretical Justification and Institutional Construction of Pre-training Data Disclosure Obligations for AI Large Models 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4405483
求助须知:如何正确求助?哪些是违规求助? 3891058
关于积分的说明 12109259
捐赠科研通 3536039
什么是DOI,文献DOI怎么找? 1940194
邀请新用户注册赠送积分活动 981091
科研通“疑难数据库(出版商)”最低求助积分说明 877675