Regional wind-photovoltaic combined power generation forecasting based on a novel multi-task learning framework and TPA-LSTM

光伏系统 计算机科学 风力发电 发电 可再生能源 任务(项目管理) 人工智能 功率(物理) 机器学习 工程类 系统工程 电气工程 量子力学 物理
作者
Yuejiang Chen,Jiang‐Wen Xiao,Yan‐Wu Wang,Yuanzheng Li
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:297: 117715-117715 被引量:30
标识
DOI:10.1016/j.enconman.2023.117715
摘要

Existing renewable power generation forecasting methods mainly focus on a single energy source and fail to effectively capture the spatio-temporal correlation between different power generation resources. Furthermore, the current single-site power forecasting no longer fulfills the demands of grid dispatch. This paper introduces an innovative framework for multi-task learning and uses it to achieve regional wind-photovoltaic combined power generation forecasting. First, this paper employs Maximum Information Coefficient (MIC) to identify the crucial meteorological features affecting power generation and analyze the complementarity and correlation between wind and photovoltaic power generation. Then, an innovative multi-task learning framework is proposed that separates task-specific components and shared components, allowing each task to select adaptive information that benefits itself. Besides, this paper proposes a loss optimization strategy to balance the loss magnitude and training velocity of different tasks. In order to effectively share the coupling information among the two kinds of power generation, the proposed framework is adopted to construct the regional wind-photovoltaic combined power generation forecasting model based on Temporal Pattern Attention LSTM (TPA-LSTM) algorithm. Finally, the efficiency and superiority of the proposed method are validated through several verification and comparison case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得30
刚刚
852应助科研通管家采纳,获得10
刚刚
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
科研通AI6应助寒冷依秋采纳,获得10
刚刚
Silvia完成签到,获得积分10
刚刚
刚刚
1秒前
今后应助科研通管家采纳,获得10
1秒前
JamesPei应助感性的初兰采纳,获得10
1秒前
2秒前
慕青应助科研通管家采纳,获得10
2秒前
Levi完成签到,获得积分10
2秒前
斯文败类应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
刘萍发布了新的文献求助10
4秒前
文献荒发布了新的文献求助10
4秒前
852应助圣晟胜采纳,获得10
4秒前
4秒前
冯心宇发布了新的文献求助10
4秒前
Ander完成签到 ,获得积分10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
meym完成签到,获得积分20
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
qsx完成签到,获得积分10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
7秒前
阿伟完成签到,获得积分10
7秒前
丘比特应助平淡的文龙采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261651
求助须知:如何正确求助?哪些是违规求助? 4422731
关于积分的说明 13767337
捐赠科研通 4297220
什么是DOI,文献DOI怎么找? 2357773
邀请新用户注册赠送积分活动 1354169
关于科研通互助平台的介绍 1315315